Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(31): 10935-10946, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499244

RESUMO

The development of room-temperature chemiresistive gas sensors with low limit of detection, high sensitivity, and selectivity for dimethyl methylphosphonate (DMMP) detection remains a challenge. Herein, a synergy of the two intermolecular hydrogen bond-promoted approach was proposed to fabricate a room-temperature DMMP sensor with enhanced performances. As a proof of concept, ternary p-hexafluoroisopropanol phenyl (HFIP) functionalized polypyrrole-reduced graphene oxide hybrids (HFIP-PPy-rGO) were rationally designed. During the sensing process, rGO serves as a conductive carrier, ensuring that the sensors operate at room temperature, and both HFIP and PPy act as adsorption sites for DMMP through hydrogen bonding interactions. As expected, the HFIP-PPy-rGO sensor exhibits high selectivity and sensitivity to DMMP. Besides, the HFIP-PPy-rGO sensor also possesses excellent linear response to DMMP and long-term stability. Experimental results and quartz crystal microbalance measurements prove that the specific recognition of DMMP is realized by forming two intermolecular hydrogen bonds between HFIP and DMMP, as well as PPy and DMMP. Additionally, the introduction of HFIP groups also contributes to adjusting device conductivity, enhancing signal conversion function. To put the DMMP sensor into potential practical application, the obvious sensing response to different DMMP concentrations in soil was confirmed, and a wireless detection system was built to realize real-time monitoring of DMMP concentrations in the surroundings. Overall, this study provides a facile and practical solution for improving the sensing performance of room-temperature sensors based on the hydrogen bond theory.

2.
Sci Total Environ ; 871: 161988, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739018

RESUMO

Common cyanotoxins, such as microcystins and nodularins, are produced by frequently occurring harmful cyanobacterial algal blooms in freshwater systems. The required routine monitoring of microcystins and nodularins in drinking water and ambient water demands cost-efficient and reliable enzyme-linked immunosorbent assay kits. We validated the performance of a self-produced broad-spectrum enzyme-linked immunosorbent assay kit and investigated two different methods of mitigating the matrix effects to elucidate the effect of the respective pretreatment approaches recommended by China and the United States on the quantitative detection of cyanotoxins in surface water. We found that the enzyme-linked immunosorbent assay kit achieved a detection limit of 0.15 µg/L with a linear detection range from 0.27 µg/L to 1.87 µg/L for microcystin-LR (the most studied and widely distributed cyanotoxin). The matrix effects could be mitigated both by dilution of water samples with an optimal dilution ratio and dilution of antibody with the buffer containing phosphate buffer solution (10×), bovine serum albumin (1 %) and ethylene diamine tetraacetic acid (0.5 %). In terms of the surface water samples being tested, the concentrations of microcystins and nodularins measured based on pretreatment approach recommended by the United States were 1- 5 times that measured based on pretreatment approach recommended by China, indicating that the pretreatment approach of China overlooks cyanotoxins. In addition, all the measured total microcystins and nodularins of the surface water samples were below the health advisory limit (1.6 µg/L) for microcystins in drinking water proposed by the United States Environmental Protection Agency for school-age children and adults. Our research could provide significant information for outbreak warnings and risk management of harmful cyanobacterial algal blooms.


Assuntos
Água Potável , Microcistinas , Criança , Humanos , Microcistinas/análise , Toxinas de Cianobactérias , Água Potável/análise , Ensaio de Imunoadsorção Enzimática/métodos , Água Doce/análise
3.
Biosens Bioelectron ; 205: 114099, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217255

RESUMO

Cyanobacterial harmful algal blooms in freshwater systems can produce cyanotoxins, such as microcystins (MCs) and nodularins (NODs), presenting serious threats to human health and ecosystems. Required routine monitoring of cyanotoxins in water samples, as posed by U.S. EPA drinking water contaminant candidate list 5 (CCL5), demands for cost-effective, reliable and sensitive MCs/NODs detection methods. We report the development of a colorimetric paper-based immunochip assisted by nanozyme catalysis with a smartphone readout system for rapid detection of cyanotoxins in water. We show that the introduction of biorthogonal click reaction enables in situ facile self-assembly of multi-layers of peroxidase-like nanozyme onto the anti-MCs/NODs monoclonal antibody. We can detect 13 variants of MCs/NODs even in the sub-microgram per liter range with detection limit of below 0.7 µg/L and satisfactory recovery percentages between 88 and 120% in different water matrices. Our technology shows a good correlation with the well-developed ELISA technology, demonstrating its great potential applications in resource-limited or less-developed regions for on-site and large-scale screening of cyanotoxins in water environment.


Assuntos
Técnicas Biossensoriais , Água Potável , Toxinas de Cianobactérias , Água Potável/análise , Ecossistema , Microcistinas/análise , Smartphone
4.
Biosens Bioelectron ; 176: 112902, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341317

RESUMO

A novel U-shaped fiber-optic evanescent-wave fluorescent immunosensor was designed that exploits light-sheet excitation of skew rays in a passive fiber for sensitive microcystin-LR (MC-LR) detection in real-time. In particular, a light sheet comprising a thin plane of light can be concentrated into exciting the optimum ray group, resulting in enhanced interaction between light and fluorophores. Meanwhile, skew rays excited by transmitting light into an optical fiber with an angle offset allow a much higher number of total-internal-reflections with increased interaction length along the fiber interface, which strengthens the light-matter interactions. Under the optimal angle offset, the proposed evanescent wave fluorescent immunosensor is the first demonstration of integrating light-sheet skew rays and a U-shaped fiber-optic probe for enhanced sensitivity. The results show that fluorescence sensitivity of the U-shaped fiber-optic probe with light-sheet skew rays excitation is 16 times higher than that of collimated skew rays excitation. Combined with this newly designed light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor, a sensitive and real-time MC-LR detection method was established based on the indirect competitive immunoassay principle. Real environmental water samples spiked with MC-LR were determined by the immunosensor with recovery rates between 85% and 112%. The present system could be an alternative tool for the on-site environmental monitoring, in-field food safety assurance and clinical diagnostics. It also advances the fiber-optic sensors field in terms of experimental design.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Toxinas Marinhas , Microcistinas
5.
Mikrochim Acta ; 187(4): 214, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32162015

RESUMO

Herein, we report a rapid and sensitive colorimetric detection of Hg2+ by designing a specific DNA probe with phosphorothioate RNA modification (PS-probe) for Hg2+ recognition and utilizing DNA-modified gold nanoparticles (DNA-AuNPs) as the transducer. The distance between two DNA-AuNPs is controlled by a linker DNA, providing the linker DNA-regulated aggregation or dispersion status of AuNPs in solution. Exonuclease III (Exo III) can trigger the recycled digestion of linker DNA strands, inhibiting the reformation of aggregated nanoparticles and hence leading to a color shift from purple to red. However, the Hg2+-induced cleavage of the PS-probe can efficiently prevent the digestion of linker DNA strands by Exo III and hence reassemble the modified AuNPs to form aggregates in purple color. Thus, a positive correlation between the linker DNA strands left and the addition of Hg2+ provides a quantitative basis for Hg2+ sensing. A linear range of A520/A700 versus Hg2+ concentration is achieved in the range 2-100 nM associated with a detection limit as low as 1.30 ± 0.04 nM. Moreover, the biosensor exhibits excellent selectivity for Hg2+. The strong selectivity behavior was confirmed by recoveries ranging from 96 to 114% in real water samples. Graphical abstractSchematic representation of sensing mechanism of Hg2+ using a DNA probe with phosphorothioate RNA modification (PS-probe) and Exo III-assisted signal amplification.


Assuntos
Técnicas Biossensoriais , Colorimetria , Sondas de DNA/química , Mercúrio/análise , Técnicas de Amplificação de Ácido Nucleico , Sondas de DNA/síntese química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Fosfatos/química , Fosfatos/metabolismo , RNA/química , RNA/metabolismo
6.
J Hazard Mater ; 384: 120948, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610345

RESUMO

Facile and ultrasensitive detection of Hg2+ in water environment remains challenging. Exonuclease III (Exo-III)-assisted target recycling is one of the most popular amplification strategies. Although the magnesium (II) ions are widely acting as cofactors of Exo-III, we recognized that Mg2+ cofactors would strongly disturb the charge distribution on citrate-stablized gold nanoparticles (in the general sense, unmodified AuNPs) surface, thus generate false positive colorimetric signals. To address this issue, we first put forward the view that the cobalt (II) ions can function as the Exo-III cofactor and successfully construct a novel label-free colorimetric aptasensor for facile and ultrasensitive detection of Hg2+ using Hg2+-triggered Exo-III-assisted signal amplification and unmodified AuNPs as indicators. A hairpin-looped DNA probe was rationally designed with thymine-rich recognition termini and specifically recognized trace Hg2+ by a stable T-Hg2+-T structure. A blue-to-red color change of AuNPs with the addition of Hg2+ provided the quantitative detection of Hg2+ with a limit of detection of 0.2 nM and a linear working range from 0.5 nM to 5.0 nM. The whole testing time for one assay was approximately 40 min. Real water samples, even containing Hg2+ at 1 nM, could be determined by the aptasensor with recovery rates from 97% to 103%.


Assuntos
Aptâmeros de Nucleotídeos/química , Cobalto/química , Sondas de DNA/química , Exodesoxirribonucleases/química , Ouro/química , Mercúrio/análise , Nanopartículas Metálicas/química , Poluentes Químicos da Água/análise , Colorimetria , Água Potável , Lagos , Mercúrio/química , Técnicas de Amplificação de Ácido Nucleico , Timina/química , Poluentes Químicos da Água/química
7.
ACS Appl Mater Interfaces ; 11(40): 36444-36448, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525882

RESUMO

Ultrasensitive PCR-free microRNA (miR) analysis based on biosensors with enzyme-free nucleic acid amplification and reusable surface has great clinical significance in cancer prognosis. However, building such a biosensing strategy has long been challenging due to uncontrollable miR-triggered cascade amplifiers and insufficient sensing surface regeneration capability. To meet the challenge, for the first time, a general approach, named enzyme-free multitag-regulated cascade reaction (MCR), is developed to fabricate reliable trace miR biosensors. As a proof of concept, miR let-7a is detected on an evanescent wave fluorescent optical-fiber biosensing platform. The size and morphology of well-formed MCR assemblies (∼1 µm in length) are characterized by atomic force microscopy. This MCR method achieves a 30 000-fold improved sensitivity (detection limit 0.8 fM) compared to the MCR-free system and can detect abnormal urinary miR levels in lung cancer patients. Moreover, the biosensor is robust enough to be reused for over 100 cycles, which greatly reduces the cost of single detection. In sum, MCR is developed as a generalizable ultrasensitive miR biosensing approach for cancer prognosis, which opens a broad field for facile enzyme-free biosensing applications by nucleic acid assembling regulation.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Humanos , MicroRNAs/genética , MicroRNAs/urina , Tamanho da Partícula , Prognóstico
8.
J Hazard Mater ; 355: 50-55, 2018 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-29772375

RESUMO

To meet the severe water pollution status, multi-target biosensor becomes one of research focus. We herein report a novel duplex functional fluorescent biosensor for the label-free and separate detection of Pb2+ and Hg2+ with high sensitivity and selectivity. A K+-induced fluorescent G-quadruplex probe was assembled by a guanine-rich sequence (AGRO100) and N-methyl mesoporphyrin IX(NMM). It changed into a more stably non-fluorescent G-quadruplex structure and a hairpin-like structure upon binding Pb2+ and Hg2+ ions, respectively. As a result, the fluorescence decreased with relation to the addition of targets, allowing the separate detection of Pb2+ and Hg2+ ions at concentrations as low as 5 nM and 18.6 nM. The linear correlation existed between the fluorescence intensity and the concentration of Pb2+ and Hg2+ over the range of 10-200 nM (R2 = 0.98) and 20-1000 nM (R2 = 0.99), respectively. All real lake samples, even containing Pb2+ or Hg2+ at 50 nM, could be determined by the duplex functional fluorescent probe with recovery rates 96% and 104%, respectively. Considering that this sensor is label-free, simple, time-saving, cost-effective and easy-to-handle, it is possible to pave its way for Pb2+ and Hg2+ detection in various application fields.


Assuntos
Técnicas Biossensoriais , Chumbo/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Sondas de DNA , Corantes Fluorescentes , Quadruplex G , Mesoporfirinas
9.
Sci Rep ; 5: 8125, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634469

RESUMO

This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 µM to 20 µM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Bioensaio/métodos , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Quadruplex G , Substâncias Intercalantes/metabolismo , Canamicina/análise , Animais , Técnicas Biossensoriais , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Leite/química , Espectrometria de Fluorescência , Coloração e Rotulagem
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(11): 3151-4, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26978926

RESUMO

Heavy metal pollution has received great attentions in recent years. The traditional methods for heavy metal detection rely on the expensive laboratory instruments and need time-consuming preparation steps; therefore, it is urgent to develop quick and highly sensitive new technologies for heavy metal detection. The colorimetric method based on the gold nanoparticles (AuNPs) features with simple operation, high sensitivity and low cost, therefore, enabling it widely concerned and used in the environmental monitoring, food safety and chemical and biological sensing fields. This work developed a simple, rapid and highly sensitive strategy based on the Fenton reaction and unmodified AuNPs for the detection of Cu²âº in water samples. The hydroxyl radical ( · OH) generated by the Fenton reaction between the Cu²âº and sodium ascorbate (SA) oxidized the single stranded DNA (ssDNA) attached on the AuNPs surface into variable sequence fragments. The cleavage of ssDNA induced the aggregation of AuNPs in a certain salt solution, therefore, resulting in the changes on the absorbance of solution. The assay conditions were optimized to be pH value of 7.9, 11 mg · L⁻¹ ssDNA, 8 mmol · L⁻¹ SA and 70 mmol · L⁻¹ NaCl. Results showed that the absorbance ratio values at the wavelengths of 700 and 525 nm (A700/A525) were linearly correlated with the Cu²âº concentrations. The linear detection range was 0.1-10.0 µmol · L⁻¹ with a detection limit of 24 nmol · L⁻¹ (3σ). Spiked recoveries ranged from 87%-120% in three sorts of water, including drinking water, tap water and lake water, which confirmed that the potentials of the proposed assay for Cu²âº detection in reality.


Assuntos
Cobre/análise , Água Potável/análise , Ouro/química , Nanopartículas Metálicas/química , Poluentes da Água/análise , DNA de Cadeia Simples/química , Peróxido de Hidrogênio , Ferro , Lagos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA