Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0236760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726372

RESUMO

The neural mechanisms underlying forward suppression in the auditory cortex remain a puzzle. Little attention is paid to thalamic contribution despite the important fact that the thalamus gates upstreaming information to the auditory cortex. This study compared the time courses of forward suppression in the auditory thalamus, thalamocortical inputs and cortex using the two-tone stimulus paradigm. The preceding and succeeding tones were 20-ms long. Their frequency and amplitude were set at the characteristic frequency and 20 dB above the minimum threshold of given neurons, respectively. In the ventral division of the medial geniculate body of the thalamus, we found that the duration of complete forward suppression was about 75 ms and the duration of partial suppression was from 75 ms to about 300 ms after the onset of the preceding tone. We also found that during the partial suppression period, the responses to the succeeding tone were further suppressed in the primary auditory cortex. The forward suppression of thalamocortical field excitatory postsynaptic potentials was between those of thalamic and cortical neurons but much closer to that of thalamic ones. Our results indicate that early suppression in the cortex could result from complete suppression in the thalamus whereas later suppression may involve thalamocortical and intracortical circuitry. This suggests that the complete suppression that occurs in the thalamus provides the cortex with a "silence" window that could potentially benefit cortical processing and/or perception of the information carried by the preceding sound.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Pós-Sinápticos Inibidores , Tálamo/fisiologia , Animais , Córtex Auditivo/citologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Tálamo/citologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-25852485

RESUMO

The interplay of cortical excitation and inhibition is a fundamental feature of cortical information processing. Excitation and inhibition in single cortical neurons are balanced in their response to optimal sensory stimulation due to thalamocortical feedforward microcircuitry. It is unclear whether the balance between cortical excitation and inhibition is maintained at the threshold stimulus level. Using in vivo whole-cell patch-clamp recording of thalamocortical recipient neurons in the primary auditory cortex of mice, we examined the tone-evoked excitatory and inhibitory postsynaptic currents at threshold levels. Similar to previous reports, tone induced excitatory postsynaptic currents when the membrane potentials were held at 70 mV and inhibitory postsynaptic currents when the membrane potentials were held at 0 mV on single cortical neurons. This coupled excitation and inhibition is not demonstrated when threshold-level tone stimuli are presented. In most cases, tone induced only excitatory postsynaptic current. The best frequencies of excitatory and inhibitory responses were often different and thresholds of inhibitory responses were mostly higher than those of excitatory responses. Our data suggest that the excitatory and inhibitory inputs to single cortical neurons are imbalanced at the threshold level. This imbalance may result from the inherent dynamics of thalamocortical feedforward microcircuitry.


Assuntos
Córtex Auditivo/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Técnicas de Patch-Clamp
3.
Front Syst Neurosci ; 8: 125, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071477

RESUMO

The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA