Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Sci Rep ; 14(1): 15527, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969797

RESUMO

Health monitoring and fault diagnosis of rolling bearings are crucial for the continuous and effective operation of mechanical equipment. In order to improve the accuracy of BP neural network in fault diagnosis of rolling bearings, a feature model is established from the vibration signals of rolling bearings, and an improved genetic algorithm is used to optimize the initial weights, biases, and hyperparameters of the BP neural network. This overcomes the shortcomings of BP neural network, such as being prone to local minima, slow convergence speed, and sample dependence. The improved genetic algorithm fully considers the degree of concentration and dispersion of population fitness in genetic algorithms, and adaptively adjusts the crossover and mutation probabilities of genetic algorithms in a non-linear manner. At the same time, in order to accelerate the optimization efficiency of the selection operator, the elite retention strategy is combined with the hierarchical proportional selection operation. Using the rolling bearing dataset from Case Western Reserve University in the United States as experimental data, the proposed algorithm was used for simulation and prediction. The experimental results show that compared with the other seven models, the proposed IGA-BPNN exhibit superior performance in both convergence speed and predictive performance.

2.
Heliyon ; 10(12): e32846, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021917

RESUMO

With the rapid development of power technology and the complexity of power system equipment, efficient and accurate assessment of the quality and condition of electric power equipment oil (EPEO) has become particularly critical. EPEO is an important factor to ensure the stable operation of power equipment, and its quality and state directly affect the safety and reliability of equipment. However, there are many challenges with traditional oil measuring techniques, which often rely on destructive testing, which not only increases maintenance costs, but can also cause damage to the equipment itself. In the face of these limitations, there is an urgent need to study new oil detection technologies and methods to meet the high standards of modern power systems for high efficiency, non-destructive and comprehensive analytical capabilities. In this paper, a new EPEO measuring technique based on multivariable impedance spectroscopy (MIS) is proposed. Through in-depth analysis of oil's impedance response characteristics under electric field excitation with different frequency., a new approach is provided for the comprehensive evaluation of oil's performance. MIS technology not only has the characteristics of non-destructive testing, ensuring the non-destructive measuring of EPEO, but also its rapid response and real-time analysis ability significantly improves the monitoring efficiency. Based on the proposed MIS detection method, a detection system and experimental prototype which can detect and evaluate the performance and quality of power oil more accurately are designed. Compared with the traditional measuring device, the measuring device utilized in this method can employ three variables. Specifically, it covers a frequency range for the detectable excitation signal spanning from 1 to 100 kHz, an amplitude range from 0.1 to 11.7 V, and a temperature range from -100 °C to 100 °C. The MIS detection method has the capability to identify a variety of parameters, including the dielectric constant, volume resistivity, and dielectric loss factor, among others. This method encompasses a broader spectrum of parameters compared to traditional detection methods, which typically focus on one or two detectable indicators. The correctness and feasibility of the proposed multivariable impedance spectrum detection technique are verified, which provides a new way for the comprehensive evaluation of oil's performance.

3.
Clin Oral Investig ; 28(7): 395, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916666

RESUMO

BACKGROUND: While the accurate prediction of the overall survival (OS) in patients with submandibular gland cancer (SGC) is paramount for informed therapeutic planning, the development of reliable survival prediction models has been hindered by the rarity of SGC cases. The purpose of this study is to identify key prognostic factors for OS in SGC patients using a large database and construct decision tree models to aid the prediction of survival probabilities in 12, 24, 60 and 120 months. MATERIALS AND METHODS: We performed a retrospective cohort study using the Surveillance, Epidemiology and End Result (SEER) program. Demographic and peri-operative predictor variables were identified. The outcome variables overall survival at 12-, 24-, 60, and 120 months. The C5.0 algorithm was utilized to establish the dichotomous decision tree models, with the depth of tree limited within 4 layers. To evaluate the performances of the novel models, the receiver operator characteristic (ROC) curves were generated, and the metrics such as accuracy rate, and area under ROC curve (AUC) were calculated. RESULTS: A total of 1,705, 1,666, 1,543, and 1,413 SGC patients with a follow up of 12, 24, 60 and 120 months and exact survival status were identified from the SEER database. Predictor variables of age, sex, surgery, radiation, chemotherapy, tumor histology, summary stage, metastasis to distant lymph node, and marital status exerted substantial influence on overall survival. Decision tree models were then developed, incorporating these vital prognostic indicators. Favorable consistency was presented between the predicted and actual survival statuses. For the training dataset, the accuracy rates for the 12-, 24-, 60- and 120-month survival models were 0.866, 0.767, 0.737 and 0.797. Correspondingly, the AUC values were 0.841, 0.756, 0.725, and 0.774 for the same time points. CONCLUSIONS: Based on the most important predictor variables identified using the large, SEER database, decision tree models were established that predict OS of SGC patients. The models offer a more exhaustive evaluation of mortality risk and may lead to more personalized treatment strategies.


Assuntos
Árvores de Decisões , Programa de SEER , Neoplasias da Glândula Submandibular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Glândula Submandibular/patologia , Neoplasias da Glândula Submandibular/terapia , Idoso , Prognóstico , Adulto , Taxa de Sobrevida , Estadiamento de Neoplasias , Algoritmos , Análise de Sobrevida
4.
Microcirculation ; 31(5): e12860, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837938

RESUMO

OBJECTIVE: Diabetic foot ulcer (DFU) is a severe complication with high mortality. High plantar pressure and poor microcirculation are considered main causes of DFU. The specific aims were to provide a novel technique for real-time measurement of plantar skin blood flow (SBF) under walking-like pressure stimulus and delineate the first plantar metatarsal head dynamic microcirculation characteristics because of life-like loading conditions in healthy individuals. METHODS: Twenty young healthy participants (14 male and 6 female) were recruited. The baseline (i.e., unloaded) SBF of soft tissue under the first metatarsal head were measured using laser Doppler flowmetry (LDF). A custom-made machine was utilized to replicate daily walking pressure exertion for 5 min. The exerted plantar force was adjusted from 10 N (127.3 kPa) to 40 N (509.3 kPa) at an increase of 5 N (63.7 kPa). Real-time SBF was acquired using the LDF. After each pressure exertion, postload SBF was measured for comparative purposes. Statistical analysis was performed using the R software. RESULTS: All levels of immediate-load and postload SBF increased significantly compared with baseline values. As the exerted load increased, the postload and immediate-load SBF tended to increase until the exerted load reached 35 N (445.6 kPa). However, in immediate-load data, the increasing trend tended to level off as the exerted pressure increased from 15 N (191.0 kPa) to 25 N (318.3 kPa). For postload and immediate-load SBF, they both peaked at 35 N (445.6 kPa). However, when the exerted force exceeds 35 N (445.6 kPa), both the immediate-load and postload SBF values started to decrease. CONCLUSIONS: Our study offered a novel real-time plantar soft tissue microcirculation measurement technique under dynamic conditions. For the first metatarsal head of healthy people, 20 N (254.6 kPa)-plantar pressure has a fair microcirculation stimulus compared with higher pressure. There might be a pressure threshold at 35 N (445.6 kPa) for the first metatarsal head, and soft tissue microcirculation may decrease when local pressure exceeds it.


Assuntos
, Microcirculação , Pele , Humanos , Masculino , Feminino , Microcirculação/fisiologia , Adulto , Pele/irrigação sanguínea , Pele/fisiopatologia , Pé/irrigação sanguínea , Pressão , Ossos do Metatarso/irrigação sanguínea , Ossos do Metatarso/fisiopatologia , Fluxometria por Laser-Doppler/métodos , Adulto Jovem , Caminhada/fisiologia , Pé Diabético/fisiopatologia
5.
Heliyon ; 10(10): e30860, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774321

RESUMO

Background: Accurately predicting the survival rate of submandibular gland cancer (SGC) is of significant importance for guiding treatment decision-making and improving patient outcomes. This study was aimed to identify the independent prognostic factors of overall survival (OS) in SGC patients, and develop novel prediction models to aid clinicians in predicting the survival probability. Materials and methods: Patients diagnosed with primary SGC after the year 2010 were extracted from SEER database and then randomly allocated into training and test samples in a 7:3 ratio. Uni- and multi-variable COX analyses were employed using the training sample to ascertain independent prognostic factors for OS. Subsequently, graphic and online dynamic nomograms were established basing on the independent prognostic factors. We utilized C-index, calibration curve, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) value to evaluate the discrimination capacity and the consistency between predicted and actual survival. Results: A total of 527 SGC patients were included (369 assigned to training group and 158 assigned to test group). The multivariable COX analysis showed that age, sex, marital status, tumor histology, summary stage, metastases to bone, and tumor size were independently associated with OS. Novel graphical and online dynamic (URL: https://yangxg1209.shinyapps.io/overall_survival_submandibular_gland_tumor/) nomograms were established. The C-indices (training: 0.77, 95%CI 0.71-0.84; test: 0.77, 95%CI 0.68-0.85) indicate favorable discrimination ability of the model, and the calibration curves demonstrated favorable consistency between the predicted and actual survival rates. Conclusions: Our study identified the independent prognostic factors influencing OS in patients with SGC, and successfully established and validated novel nomograms, which provide accurate prediction of survival rates and allows for personalized risk assessment.

6.
Biochem Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710962

RESUMO

The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture animal in China and exhibits growth dimorphism. Single-male cultures are often selected for higher economic efficiency. However, the mechanism of sex differentiation in P. sinensis is not well-known. In this study, a comparative transcriptome analysis of male (ZZ)- and 17ß-oestradiol (E2)-induced pseudo-female (ZZ + E2)-stage embryonic gonads of P. sinensis was performed. A total of 420 differentially expressed genes (DEGs), which included 271 upregulated genes and 149 downregulated genes, were identified. These DEGs were mainly involved in several sex-related pathways, such as "ovarian steroidogenesis", "steroid hormone biosynthesis", "PPAR signalling pathway", and "metabolism of xenobiotics by cytochrome P450". In addition, 50 known and novel candidate genes involved in sex differentiation, such as the male-biased genes AMH, DMRT1, TBX1, and CYP26A1 and the female-biased genes CYP1A1, RASD1, and SOX17, were investigated and identified. For further verification, the full-length cDNAs of SOX17 and CYP26A1 were obtained. SOX17 contains a 1218-bp ORF and encodes 405 amino acids containing an HMG functional domain unique to the Sox superfamily. CYP26A1 contains a 1485-bp ORF and encodes 494 amino acids. Different expression levels of SOX17 and CYP26A1 could be detected in all the tested tissues of males and females. Notably, the expression of CYP26A1 was markedly greater in the gonads of male embryos (P < 0.05) than in those of female embryos, whereas the expression of SOX17 showed the opposite trend (P < 0.05). Taken together, the RNA-seq and qRT‒PCR results suggested potential roles for SOX17 and CYP26A1 in promoting female and male gonadal development, respectively, in P. sinensis. Our results provide new evidence for the mechanism of sex differentiation in P. sinensis.

7.
Mol Biol Rep ; 51(1): 263, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302771

RESUMO

BACKGROUND: TRIM proteins, recognized as a class of E3 ubiquitin ligases, are increasingly acknowledged for their antipathogen immune functions in mammals and fish. In the Chinese soft-shelled turtle (Pelodiscus sinensis), a secondary aquatic reptile that occupies a unique evolutionary position, the TRIM gene has rarely been reported. METHODS AND RESULTS: In the present study, 48 PsTRIM proteins were identified from the genome of Pelodiscus sinensis via Hidden Markov Model (HMM) searches and Signal Transduction ATPases with Numerous Domains (SMART) analysis. These PsTRIMs were found across 43 distinct scaffolds, and phylogenetic analyses classified them into three principal clades. The PsTRIMs feature a conserved assembly of either RING-B-box-coiled-coil (RBCC) or B-box-coiled-coil (BBC) domains at the N-terminus, in addition to eight unique domains at the C-terminus, including the B30.2 domain, 19 of which were identified. Expression profiling revealed ubiquitous expression of the 48 PsTRIMs across various P. sinensis tissues. Notably, seven PsTRIMs exhibited significant differential expression in liver transcriptomes following infection with Aeromonas hydrophila. Weighted gene coexpression network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis implicated PsTRIM14 and PsTRIM28 as key players in host defense against bacterial invasion. Real-time quantitative PCR results indicated that PsTRIM1, PsTRIM2, PsTRIM14, and PsTRIM28 experienced marked upregulation in P. sinensis livers at 12 h post-infection with A. hydrophila. CONCLUSIONS: Our study is the first to comprehensively identify and analyze the functions of TRIM genes in P. sinensis, unveiling their considerable diversity and potential roles in modulating immune responses.


Assuntos
Transcriptoma , Tartarugas , Animais , Aeromonas hydrophila , Genômica , Filogenia , Transcriptoma/genética , Proteínas com Motivo Tripartido/genética , Tartarugas/genética
8.
J Am Chem Soc ; 146(4): 2718-2727, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237149

RESUMO

The synthesis of fluorescent self-healing polymers by the incorporation of a fluorophore-containing olefin into a polyolefin backbone through catalyst-controlled multicomponent copolymerization is of fundamental interest and practical importance, but such an approach has remained unexplored to date. Herein, we report for the first time the synthesis of tough and fluorescent self-healing polymers by sequence-controlled terpolymerization of 4-[2-(1-pyrenyl)ethenyl]styrene (Pyr), ethylene (E), and anisylpropylene (AP) using a sterically demanding half-sandwich scandium catalyst. The resulting terpolymers consisted of relatively long alternating E-alt-AP sequences, isolated Pyr units, and short E-E blocks, which exhibited excellent tensile strength, remarkable self-healability, and high fluorescence quantum yield. The excellent mechanical and self-healing properties could be attributed to the nanophase separation of the crystalline E-E segments and the hard Pyr aggregates from a flexible E-alt-AP segment matrix, in which the Pyr units not only served as an efficient fluorophore but also played an important role in forming nanodomains and enhancing the polymer mobility. Furthermore, the styrenyl C═C bond of the Pyr unit in the terpolymers could undergo [2 + 2] cycloaddition under photoirradiation, which thus enabled the fabrication of a self-healable fluorescent two-dimensional image on a terpolymer film through photolithography. This work offers an unprecedented efficient protocol for the synthesis of a brand-new family of fluorescent self-healing materials, showcasing the high potential of catalyst-controlled sequence-regular copolymerization of different olefins for the creation of novel functional polymers.

9.
ISA Trans ; 144: 271-281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925231

RESUMO

The motion of an autonomous ship is different from that of ground and aerial robots due to its maneuvering and environmental constraints. As a result, many techniques have been introduced for autonomous ship path planning. This paper presents a novel technique for global and local navigation planning of autonomous ships under complex static and dynamic constraints. Our technique, termed safety-enhanced path planning (SPP), has been developed to avoid potential collisions with underwater obstacles near seaside areas. SPP pre-processes the map to preserve the shape of visible obstacles and mark a safety-outline around the shores. Subsequently, an offset safety line (OSL) is drawn about the original shore to protect the ship when passing close to threat-defined offshore areas. The global path is produced with an enhanced A* multi-directional algorithm, considering the kinematic constraint of the ship. To ensure optimal path quality, the global path is further refined with a smoothing filter to improve consistency and smoothness. Additionally, local navigation is introduced to help the autonomous ship avoid collisions with other obstacle ships. Local offset trajectories are produced with 4th and 5th degree polynomials along longitudinal and lateral coordinates in time t. Distance closest point approach (DCPA) is utilized for early obstacle prediction to help the ship maneuver in complex dynamic obstacle avoidance scenarios. The trajectory set is filtered with an efficient cost policy to obtain the best trajectory for dynamic collision avoidance. We conduct simulations in MATLAB and compared with other maritime path planning methods to verify the effectiveness of our approach.

10.
Heliyon ; 9(9): e19689, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809506

RESUMO

Additive manufacturing (AM), also known as 3D printing, is a new manufacturing trend showing promising progress over time in the era of Industry 4.0. So far, various research has been done for increasing the reliability and productivity of a 3D printing process. In this regard, reviewing the existing concepts and forwarding novel research directions are important. This paper reviews and summarizes the process flow, technologies, configurations, and monitoring of AM. It started with the general AM process flow, followed by the definitions and the working principles of various AM technologies and the possible AM configurations, such as traditional and robot-assisted AM. Then, defect detection, fault diagnosis, and open-loop and closed-loop control systems in AM are discussed. It is noted that introducing robots into the assisting mechanism of AM increases the reliability and productivity of the manufacturing process. Moreover, integrating machine learning and conventional control algorithms ensures a closed-loop control in AM, a promising control strategy. Lastly, the paper addresses the challenges and future trends.

11.
J Orthop Surg Res ; 18(1): 740, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775789

RESUMO

BACKGROUND: Aging and diabetes can impair the balance function of the elderly and diabetic patients and increase their fall risk. This study aimed to assess the shaking amplitude of the center-of-pressure (CoP) during static standing, to analyze the effects of aging and diabetes on the balance control. MATERIALS AND METHODS: This cross-sectional observational study, compared the balance performance of 20 healthy younger adults (27.65 ± 5.60 years), 16 healthy older adults (58.88 ± 3.54 years) and 15 diabetic patients (58.33 ± 5.33 years) in four static standing conditions on a force plate: horizontal, anteroposterior (AP), left and right slope planes (5° angles on AP, left and right directions, respectively). The trajectory coordinates of the CoP over time were recorded and analyzed by principal components analysis to obtain the 95% confidence ellipse and its parameters: angle, major and minor axes lengths, and area. The balance indicators were compared among the three groups using one-way analysis of variance (ANOVA), Brown-Forsythe test or Kruskal-Wallis H test, depending on the normality and homogeneity of variance assumptions. RESULTS: The diabetic group had a significantly larger confidence ellipse area than the healthy younger adults on the horizontal plane (P = 0.032) and than the healthy older adults on the horizontal (P = 0.036), AP slope (P = 0.023), and right ML slope (P = 0.037) planes. There were no significant differences in the major axis length of the confidence ellipse among the three groups. The diabetic group had a significantly longer minor axis length than the healthy younger adults on the AP slope (P = 0.039), left ML slope (P = 0.045) and right ML slope (P = 0.016) planes and than the healthy older adults on the AP slope (P = 0.007), left ML slope (P = 0.035) and right ML slope (P = 0.012) planes. CONCLUSIONS: The balance control of diabetic patients is decreased compared with healthy younger and older people, and the body swing amplitude increases mainly in the direction of minor axis of confidence ellipse during static standing, while the swing amplitude in the direction of the major axis has no significant change. Evaluating the balance function of diabetic patients can help clinicians identify people with fall risk early and intervene early, thereby reducing the occurrence of fall events in this population.


Assuntos
Diabetes Mellitus , Equilíbrio Postural , Humanos , Idoso , Análise de Componente Principal , Estudos Transversais , Envelhecimento
12.
Orthop Surg ; 15(11): 2777-2785, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749776

RESUMO

BACKGROUND: Different treatment methods have been developed for acute Achilles tendon rupture (ATR), including conservative treatment, minimally invasive or transdermal surgery, and open surgery, and there is no consensus about which method is superior. It is important to clarify the presence of Achilles tendon (AT) degeneration, the rupture site, and the rupture shape before surgery to determine whether minimally invasive or open surgery should be selected, thereby reducing the re-rupture rate following acute ATR. The aim of this study was to investigate the diagnostic value of MRI in identifying the presence of AT degeneration, the rupture site, and the rupture shape for acute closed ATR. METHODS: From January 2016 to December 2019, patients with acute closed ATR who had undergone repair surgery were retrospectively enrolled. All patients received MRI examination, and the distance between the insertion site and broken end and the rupture shape (types I, II, and III) were independently determined by two observers. Then, the stump of the AT was exposed during the operation. The rupture site and rupture shape were recorded and compared and analyzed with the MRI results. Consistency analyses (using Cohen's kappa coefficient or intraclass correlation coefficient-ICC) and calculation of diagnostic performance indexes were, respectively, conducted to evaluate the diagnostic value of the MRI. RESULTS: This study included 47 consecutive patients with acute ATR, with an average age of 38.4 years. Among them, 40 were male, and seven were female. The intraoperative exploration demonstrated a total of 34 (72.3%), 10 (21.3%), and three (6.4%) patients with type I, II, and III ruptures, respectively. The average distance between the insertion site and the proximal broken end measured intraoperatively was 4.07 ± 1.57 cm. High or excellent consistencies were found for ATR classifications (kappa: 0.739-0.770, p < 0.001) and rupture sites (ICC: 0.962-0.979, p < 0.001) between two observers and between observers 1 and 2 and intraoperative findings. Tendinopathy was identified in 22 patients by MRI and confirmed during surgery. CONCLUSIONS: MRI scanning of acute closed ATR can help determine whether there is degeneration of the AT, as well as the location and shape of the rupture, which can guide the selection of the optimal operation method for orthopedic surgeons. Therefore, it is necessary to take preoperative MRI scans for patients with acute Achilles tendon ruptures.


Assuntos
Tendão do Calcâneo , Procedimentos Ortopédicos , Traumatismos dos Tendões , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/cirurgia , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/cirurgia , Procedimentos Ortopédicos/métodos , Imageamento por Ressonância Magnética , Ruptura/diagnóstico por imagem , Ruptura/cirurgia , Doença Aguda , Resultado do Tratamento
13.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764546

RESUMO

For developing high-performance organic light-emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) emitters, the diphenyltriazine (TRZ) unit was introduced onto the 2'- and 3'-positions of xanthene moiety of spiro[fluorene-9,9'-xanthene] (SFX) to construct n-type host molecules, namely 2'-TRZSFX and 3'-TRZSFX. The outward extension of the TRZ unit, induced by the meta-linkage, resulted in a higher planarity between the TRZ unit and xanthene moiety in the corresponding 3'-TRZSFX. Additionally, this extension led to a perched T1 level, as well as a lower unoccupied molecular orbital (LUMO) level when compared with 2'-TRZSFX. Meanwhile, the 3'-TRZSFX molecules in the crystalline state presented coherent packing along with the interaction between TRZ units; the similar packing motif was spaced apart from xanthene moieties in the 2'-TRZSFX crystal. These endowed 3'-TRZSFX superior electron transport capacity in single-carrier devices relative to the 2'-TRZSFX-based device. Hence, the 3'-TRZSFX-based TADF-OLED showed remarkable electroluminescent (EL) performance under the operating luminance from turn-on to ca. 1000 cd·m-2 with a maximum external quantum efficiency (EQEmax) of 23.0%, thanks to its matched LUMO level with 4CzIPN emitter and better electron transport capacity. Interestingly, the 2'-TRZSFX-based device, with an EQEmax of 18.8%, possessed relatively low roll-off and higher efficiency when the operating luminance exceeded 1000 cd·m-2, which was attributed to the more balanced carrier transport under high operating voltage. These results were elucidated by the analysis of single-crystal structures and the measurements of single-carrier devices, combined with EL performance. The revealed position effect of the TRZ unit on xanthene moiety provides a more informed strategy to develop SFX-based hosts for highly efficient TADF-OLEDs.

15.
Mar Pollut Bull ; 194(Pt A): 115345, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531797

RESUMO

Polystyrene microspheres compounded with polyethylene glycol-based hydrogel (PS-PEG)/polydimethylsiloxane (PDMS) coatings were prepared using the physical blending method. The chemical structure, surface and interface properties, interlayer adhesion, and tensile properties were tested in this paper. Furthermore, the antifouling performance was evaluated through bovine serum albumin fluorescent protein adsorption testing, marine bacteria adhesion testing, and benthic diatom adhesion testing. The results showed that the coating performance was best when 20 wt% PS-PEG hydrogel was added. Its surface energy was only 19.21 mJ/m2, the maximum breaking strength was 1.24 MPa, the maximum elongation rate was 675 %, the elastic modulus was 2.53 MPa, and the anti-stripping rate was 100 %. In addition, the coating with added 20 wt% PS-PEG hydrogel bacterial adherence rate was 5.36 % and 2.45 % after rinsing and washing, respectively, and the removal rate was 54.29 %. In the benthic diatom adhesion test, the chlorophyll concentration a-value was only 0.0017 mg/L after washing with added 20 wt% hydrogel, and the protein desorption rate was 84.19 % higher than PDMS in the fluorescent protein adsorption test. This coating has the 'low adhesion' and 'desorption' characteristics in the three growth stages of biofouling. Meanwhile, the low surface energy of the silicone is stable, and the hydrogel also dynamically migrates to the surface to gradually form a hydration layer, both are synergistic. When 20 wt% PS-PEG hydrogel was added, the coating demonstrated excellent antifouling performance due to its high hydration layer, low surface energy, high elasticity, and high interlayer adhesion. This research is expected to contribute to the practical applications of hydrogel coatings in marine antifouling.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Polietilenoglicóis/química , Aderência Bacteriana , Hidrogéis , Dimetilpolisiloxanos , Propriedades de Superfície
16.
Front Oncol ; 13: 1222716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546402

RESUMO

Background: The primary objective of this study is to thoroughly investigate the intricate correlation between postoperative molecular residual disease (MRD) status in individuals diagnosed with stage I-IIIA non-small cell lung cancer (NSCLC) and clinicopathological features, gene mutations, the tumour immune microenvironment and treatment effects. Methods: The retrospective collection and analysis were carried out on the clinical data of ninety individuals diagnosed with stage I-IIIA NSCLC who underwent radical resection of lung cancer at our medical facility between January 2021 and March 2022. The comprehensive investigation encompassed an evaluation of multiple aspects including the MRD status, demographic information, clinicopathological characteristics, results from genetic testing, the tumor immune microenvironment, and treatment effects. Results: No significant associations were observed between postoperative MRD status and variables such as gender, age, smoking history, pathological type, and gene mutations. However, a statistically significant correlation was found between MRD positivity and T (tumor diameter > 3 cm) as well as N (lymph node metastasis) stages (p values of 0.004 and 0.003, respectively). It was observed that higher proportions of micropapillary and solid pathological subtypes within lung adenocarcinoma were associated with increased rates of MRD-positivity after surgery (p = 0.007;0.005). MRD positivity demonstrated a correlation with the presence of vascular invasion (p = 0.0002). For the expression of programmed cell death ligand 1 (PD-L1), tumour positive score (TPS) ≥ 1% and combined positive score (CPS) ≥ 5 were correlated with postoperative MRD status (p value distribution was 0.0391 and 0.0153). In terms of ctDNA elimination, among patients identified as having postoperative MRD and lacking gene mutations, postoperative adjuvant targeted therapy demonstrated superiority over chemotherapy (p = 0.027). Conclusion: Postoperative ctDNA-MRD status in NSCLC patients exhibits correlations with the size of the primary tumor, lymph node metastasis, pathological subtype of lung adenocarcinoma, presence of vascular invasion, as well as TPS and CPS values for PD-L1 expression; in postoperative patients with MRD, the effectiveness of adjuvant EGFR-TKI targeted therapy exceeds that of chemotherapy, as evidenced by the elimination of ctDNA.

17.
Small ; 19(28): e2301939, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010046

RESUMO

Bifacial CdTe solar cells with greater power density than the monofacial baselines are demonstrated by using a CuGaOx rear interface buffer that passivates while reducing sheet resistance and contact resistance. Inserting CuGaOx between the CdTe and Au increases mean power density from 18.0 ± 0.5 to 19.8 ± 0.4 mW cm-2 for one sun front illumination. However, coupling CuGaOx with a transparent conductive oxide leads to an electrical barrier. Instead, CuGaOx is integrated with cracked film lithography (CFL)-patterned metal grids. CFL grid wires are spaced narrowly enough (≈10 µm) to alleviate semiconductor resistance while retaining enough passivation and transmittance for a bifacial power gain: bifacial CuGaOx /CFL grids generate 19.1 ± 0.6 mW cm-2 for 1 sun front + 0.08 sun rear illumination and 20.0 ± 0.6 mW cm-2 at 1 sun front + 0.52 sun rear-the highest reported power density at field albedo conditions for a scaled polycrystalline absorber.

18.
Sci Adv ; 9(8): eade3761, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827366

RESUMO

There is widespread interest in reaching the practical efficiency of cadmium telluride (CdTe) thin-film solar cells, which suffer from open-circuit voltage loss due to high surface recombination velocity and Schottky barrier at the back contact. Here, we focus on back contacts in the superstrate configuration with the goal of finding new materials that can provide improved passivation, electron reflection, and hole transport properties compared to the commonly used material, ZnTe. We performed a computational search among 229 binary and ternary tetrahedrally bonded structures using first-principles methods and transport models to evaluate critical material design criteria, including phase stability, electronic structure, hole transport, band alignments, and p-type dopability. Through this search, we have identified several candidate materials and their alloys (AlAs, AgAlTe2, ZnGeP2, ZnSiAs2, and CuAlTe2) that exhibit promising properties for back contacts. We hope that these new material recommendations and associated guidelines will inspire new directions in hole transport layer design for CdTe solar cells.

19.
Panminerva Med ; 65(1): 37-42, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32881473

RESUMO

BACKGROUND: Previous studies have shown that PRDX1 is upregulated in some types of malignant tumors. The role of PRDX1 in non-small-cancer lung carcinoma (NSCLC) remains unclear. This study aims to identify the role of PRDX1 in influencing in-vitro biological functions of NSCLC and the molecular mechanism. METHODS: We collected 50 cases of fresh NSCLC and adjacent non-tumoral tissues for detecting differential expressions of PRDX1 by quantitative real-time polymerase chain reaction (qRT-PCR). Survival time of NSCLC patients, defined as the period from the operation to the latest follow-up or death due to recurrence or metastasis, was recorded for assessing the relationship between PRDX1 and prognosis in NSCLC. Using lentivirus transfection, PRDX1 level was downregulated in NSCLC cells. Subsequently, proliferative and apoptotic abilities, and expression levels of vital genes in the Wnt/ß-Catenin signaling were examined. Finally, the significance of activated Wnt/ß-Catenin signaling during PRDX1-regulated NSCLC proliferation was explored. RESULTS: Using GEPIA database and NSCLC tissues we collected, PRDX1 was detected to be upregulated in NSCLC samples than controls. PRDX1 level was related to tumor staging and prognosis in NSCLC. Knockdown of PRDX1 attenuated proliferative ability and stimulated apoptosis in NSCLC. Protein levels of Wnt5A was downregulated in H1299 and SPC-A1 cells with PRDX1 knockdown. Overexpression of ß-Catenin enhanced proliferative ability and inhibited apoptosis in NSCLC cells with PRDX1 knockdown. CONCLUSIONS: PRDX1 is upregulated in NSCLC samples, and linked to tumor staging and prognosis. It stimulates NSCLC to proliferate by activating the Wnt/ß-Catenin signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt , Proliferação de Células , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
20.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499900

RESUMO

The microstructural evolution of SK85 pearlitic steel cold-rolled up to a 90% rolling reduction was characterized by scanning electron microscopy with electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). SK85 steel exhibits excellent cold rolling performance. The interlamellar spacing of pearlite is refined obviously and a tensile strength of 2318 MPa can be reached for SK85 steel after 90% rolling reduction, an increase of 83% from 1264 MPa before rolling. The EBSD observation indicates that the {001} <110> texture becomes pronounced at a 90% rolling reduction in cold-rolled Sk85 steel. A propagation and multiplication of dislocations occur during rolling as the kernel average misorientation (KAM) angles significantly increase from 0.72° to 2.11°. The XRD analysis reveals that bcc ferrite is transformed into a bct structure at a 90% rolling reduction. The strengthening mechanism was discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA