Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(2): 268-282, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38287093

RESUMO

During double fertilization in angiosperms, the pollen tube delivers two sperm cells into an embryo sac; one sperm cell fuses with an egg cell, and the other sperm cell fuses with the central cell. It has long been proposed that the preference for fusion with one or another female gamete cell depends on the sperm cells and occurs during gamete recognition. However, up to now, sperm-dependent preferential fertilization has not been demonstrated, and results on preferred fusion with either female gamete have remained conflicting. To investigate this topic, we generated Arabidopsis thaliana mutants that produce single sperm-like cells or whose egg cells are eliminated; we found that although the three different types of sperm-like cell are functionally equivalent in their ability to fertilize the egg and the central cell, each type of sperm-like cell fuses predominantly with the egg cell. This indicates that it is the egg cell that controls its preferential fertilization. We also found that sperm-activating small secreted EGG CELL 1 proteins are involved in the regulation of egg-cell-dependent preferential fertilization, revealing another important role for this protein family during double fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sementes/metabolismo , Fertilização/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tubo Polínico
2.
Genes (Basel) ; 14(7)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37510366

RESUMO

Fagopylum tatarium (L.) Gaertn (buckwheat) can be used both as medicine and food and is also an important food crop in barren areas and has great economic value. Exploring the molecular mechanisms of the response to cadmium (Cd) stress can provide the theoretical reference for improving the buckwheat yield and quality. In this study, perennial tartary buckwheat DK19 was used as the experimental material, its key metabolic pathways in the response to Cd stress were identified and verified through transcriptomic and metabolomic data analysis. In this investigation, 1798 metabolites were identified through non-targeted metabolomic analysis containing 1091 up-regulated and 984down-regulated metabolites after treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential metabolites was significantly enriched in galactose metabolism, glycerol metabolism, phenylpropane biosynthesis, glutathione metabolism, starch and sucrose metabolism. Linkage analysis detected 11 differentially expressed genes (DEGs) in the galactose metabolism pathway, 8 candidate DEGs in the lipid metabolism pathway, and 20 candidate DEGs in the glutathione metabolism pathway. The results of our study provided useful clues for genetically improving the resistance to cadmium by analyzing the molecular mechanism of cadmium tolerance in buckwheat.


Assuntos
Cádmio , Fagopyrum , Cádmio/toxicidade , Cádmio/metabolismo , Fagopyrum/genética , Galactose/metabolismo , Multiômica , Nutrientes , Glutationa/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(45): e2207608119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322734

RESUMO

Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang et al., Nat. Commun. 12, 4380 (2021); J. F. Pinello et al. Dev. Cell 56, 3380-3392.e9 (2021)], neither HAP2/GCS1 interactors nor mechanisms for delivery and activation at the fusion site are known in multicellular plants. Here, we show that Arabidopsis thaliana HAP2/GCS1 interacts with two sperm DUF679 membrane proteins (DMP8 and DMP9), which are required for the EGG CELL 1 (EC1)-induced translocation of HAP2/GCS1 from internal storage vesicle to the sperm plasma membrane to ensure successful fertilization. Our studies in Arabidopsis and tobacco provide evidence for a conserved function of DMP8/9-like proteins as HAP2/GCS1 partner in seed plants. Our data suggest that seed plants evolved a DMP8/9-dependent fusogen translocation process to achieve timely acquisition of sperm fusion competence in response to egg cell-derived signals, revealing a previously unknown critical step for successful fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Sementes/metabolismo , Arabidopsis/metabolismo , Espermatozoides/metabolismo , Fertilização/fisiologia
4.
Genes (Basel) ; 13(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36140710

RESUMO

Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.


Assuntos
Endosperma , Oryza , Expressão Ectópica do Gene , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Amido/genética , Amido/metabolismo , Zea mays/genética , Zea mays/metabolismo
5.
J Integr Plant Biol ; 64(2): 215-229, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34473416

RESUMO

The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.


Assuntos
Magnoliopsida , Comunicação Celular , Endosperma , Sementes
6.
Plant Cell ; 33(4): 1151-1160, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793916

RESUMO

The seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm. Available data also support that endosperm development requires communication with the embryo. Here, using single-fertilization mutants, Arabidopsis thaliana dmp8 dmp9 and gex2, we demonstrate that in the absence of a zygote and embryo, endosperm initiation, syncytium formation, free nuclear cellularization, and endosperm degeneration occur as in the wild type in terms of the cytological process and time course. Although rapid embryo expansion accelerates endosperm breakdown, our findings strongly suggest that endosperm development is an autonomously organized process, independent of egg cell fertilization and embryo-endosperm communication. This work confirms both the altruistic and self-directed nature of the endosperm during coordinated embryo-endosperm development. Our findings provide insights into the intricate interaction between the two fertilization products and will help to distinguish the physiological roles of the signaling between endosperm and embryo. These findings also open new avenues in agro-biotechnology for crop improvement.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Sementes/citologia , Sementes/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/citologia , Endosperma/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Células Vegetais , Plantas Geneticamente Modificadas , Sementes/genética , Zigoto/crescimento & desenvolvimento
7.
J Integr Plant Biol ; 61(5): 598-610, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30589207

RESUMO

Programmed cell death (PCD) is an essential process for development, and shows conserved cytological features in both plants and animals. Caspases are well-known critical components of the PCD machinery in animals. However, currently few typical counterparts have been identified in plants and only several caspase-like proteases are known to be involved in plant PCD, indicating the existence of great challenge for confirming new caspase-like proteases and elucidating the mechanisms regulating plant PCD. Here, we report a novel cysteine protease, NtTPE8, which was extracted from tobacco seeds and confirmed as a new caspase-like protease. Recombinant NtTPE8 exhibited legumain and caspase-like proteolytic activities, both of which could be inhibited by the pan-caspase inhibitor (Z-VAD-FMK). Notably, NtTPE8 possessed several caspase activities and the capacity to cleave the cathepsin H substrate FVR, indicating a unique character of NtTPE8. NtTPE8 was exclusively expressed in the integumentary tapetum and thus, is the first specific molecular marker reported to date for this cell type. Down-regulation of NtTPE8 caused seed abortion, via disturbing early embryogenesis, indicating its critical role in embryogenesis and seed development. In conclusion, we identified a novel caspase-like cysteine protease, NtTPE8, exclusively expressed in the integumentary tapetum that is involved in seed development.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Caspases/genética , Caspases/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia
8.
BMC Plant Biol ; 18(1): 87, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764367

RESUMO

BACKGROUND: Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS: Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS: Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.


Assuntos
Cisteína Endopeptidases/genética , Genes de Plantas/genética , Oryza/enzimologia , Papaína/genética , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cisteína Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Oryza/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
9.
Plant Cell Rep ; 34(9): 1579-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007238

RESUMO

KEY MESSEAGE: 11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cysteine proteases in the papain C1A and legumain C13 peptidase families in plants. Cystatin family genes have only been well characterized recently in a few plant species such as Hordeum vulgare and Nicotiana tabacum, which show their critical roles in programmed cell death and responses to biotic stresses. Up to now, little is known about cystatin family genes and their roles in Oryza sativa, a model plant for cereal biology study. Here, we identified 11 cystatin genes in rice genome. Comprehensive expression profile analysis reveals that cystatin family genes in rice display diverse expression pattern. They are temporally regulated at different developmental stages during the process of seed production and germination. Our experiments also reveal that the majority of cystatin genes are responsive to plant hormones and different environmental cues including cold, drought and other abiotic stresses, while some others are very stable under different stresses, indicating their fundamental roles in normal plant development. In addition, their distribution in rice chromosomes and their evolutionary relation to the members of Cystatin family in A. thaliana and N. tabacum have also been analyzed. These works suggest multiple roles of cystatin family genes in both seed development and plant response to environmental variations.


Assuntos
Cistatinas/genética , Genes de Plantas , Família Multigênica , Oryza/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Clonagem Molecular , Sequência Conservada , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA