Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 653, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328057

RESUMO

Although subterranean termites live within soil, little attention has been paid on the potential interaction among subterranean termites and soil microbes. Herein, we conducted different choice tests to investigate aggregation and tunneling behaviors of Coptotermes formosanus Shiraki responding to soil/sand treated with conidia of seven soil fungi, Trichoderma longibrachiatum Rifai, Trichoderma koningii Oud., Trichoderma hamatum (Bon.) Bain., Trichoderma atroviride Karsten, Trichoderma spirale Indira and Kamala, Trichoderma harzianum Rifai, and Trichoderma viride Pers. ex Fries. In aggregation-choice test, soil treated with nearly all Trichoderma species tested (except T. koningii) significantly increased termite aggregation compared with untreated soil. In tunneling-choice tests, termites produced significantly larger tunnels in sand treated with T. longibrachiatum or T. koningii than that in untreated sand. We hypothesized that Trichoderma species could benefit termites by protecting them from infection of the entomopathogenic fungus Metarhizium anisopliae (Metschn) Sorokin, and three Trichoderma species that attracted termites (T. longibrachiatum, T. atroviride, and T. harzianum) were tested. The antagonism tests showed that the three Trichoderma species suppressed growth of M. anisopliae. Also, the median lethal time (LT50) of termites exposed to both Trichoderma species and M. anisopliae was significantly longer than termites exposed to M. anisopliae alone. Interestingly, though significantly fewer termites aggregated in soil treated with M. anisopliae conidia compared with untreated soil, M. anisopliae conidia mixed with T. longibrachiatum or T. harzianum were no longer repellent to termites. Our results showed that the fungi in the genus Trichoderma (1) exerted generally attractive effects on termites, (2) protected termites from the infection of entomopathogenic fungus, and (3) altered pathogen-avoiding behaviors of termites. Future studies will be required to understand the mechanisms underlying these newly discovered effects.

2.
Sci Rep ; 9(1): 3283, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824752

RESUMO

Many ants can cooperatively transport large food items (either coordinated or uncoordinated during transportation), which can be rarely observed in other animals besides humans. Although these behaviors have been extensively investigated on horizontal surfaces, few studies dealt with food transport on vertical surfaces. The red imported fire ant, Solenopsis invicta Buren, is an invasive ant species that commonly forages on trees. Our studies showed that S. invicta used multiple strategies to transport food items on vertical surfaces (tree trunks). Small food items (1 × 1 × 1 mm sausage) were carried and transported by individual ants, and larger food items were either collectively and directly transported or cut collaboratively first and small particles were then transported individually or collectively. Competition and deadlocks were frequently observed during individual and collective transport respectively. During cutting, groups of ants tightly fixed the food on the tree trunks by holding the edges of the food item, while other ants cut the food into smaller particles. All food items and particles were moved downward. We investigated the effects of food placement (placed on a platform or fixed on tree trunk), food shape (cuboid or flattened), particle sizes (0.45-1, 1-2, 2-3, or 3-4 mm), and placement height (20, 80, or 150 cm) on the food transport on tree trunks. Our studies are the first to show how fire ants transport food on a vertical surface, and may provide insights into the development of novel fire ant baiting systems that can be placed on tree trunks.


Assuntos
Formigas/fisiologia , Comportamento Alimentar/fisiologia , Espécies Introduzidas , Animais
3.
J Econ Entomol ; 112(1): 290-299, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30346605

RESUMO

Moisture conditions of food and soil are essential for the survival and foraging activities of subterranean termites. Polyacrylamide/attapulgite composite is a water-retaining agent that has been applied to increase moisture of agricultural soils. We hypothesize that polyacrylamide/attapulgite composite may increase the moisture of bait matrixes and soil surrounding baiting containers and therefore attract termites and increase their foraging activities. In the present study, aggregation and feeding preferences, survivorship, body water percentage, and wood consumption of Formosan subterranean termites, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae), were investigated when responding to polyacrylamide/attapulgite composite that was buried within soil (substrate) or filled in the void volume of baiting containers. Two-choice tests showed that termites consumed significantly more wood when polyacrylamide/attapulgite composite was buried within dry soil (27%-moisture) than the controls (no polyacrylamide/attapulgite composite was provided). However, polyacrylamide/attapulgite composite buried within wet soil (54%-moisture) did not significantly affect foraging behaviors of termites. Multiple-choice tests showed no aggregation or feeding preference of termites in the baiting containers filled with polyacrylamide/attapulgite composite compared with the soil-filled or unfilled ones, whenever the substrate was dry or wet. No-choice tests showed that the presence of polyacrylamide/attapulgite composite (buried within soil or filled in baiting containers) significantly increased wood consumption and body water percentage of termites as well as wood moisture under dry-substrate conditions. Our studies suggest that burying polyacrylamide/attapulgite composite within dry soil may enhance foraging activities of termites, but filling the bait stations with polyacrylamide/attapulgite composite may not effectively attract termites.


Assuntos
Resinas Acrílicas/farmacologia , Comportamento Animal/efeitos dos fármacos , Isópteros/efeitos dos fármacos , Compostos de Magnésio/farmacologia , Compostos de Silício/farmacologia , Animais , Solo
4.
J Vis Exp ; (140)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30451219

RESUMO

Many insects live above the ground as larvae and adults and as pupate below the ground. Compared to the above-ground stages of their life cycles, less attention has been paid on how environmental factors affect these insects when they pupate within the soil. The tea looper, Ectropis grisescens Warren (Lepidoptera: Geometridae), is a severe pest of tea plants and has caused huge economic losses in South China. The protocols described here aim to investigate, through multiple-choice bioassays, whether mature last-instar E. grisescens larvae can discriminate soil variables such as the substrate type and moisture content, and determine, through no-choice bioassays, the impact of the substrate type and moisture content on pupation behaviors and the emergence success of E. grisescens. The results would enhance the understanding of the pupation ecology of E. grisescens and may bring insights into soil-management tactics for suppressing E. grisescens populations. In addition, these bioassays can be modified to study the influences of various factors on the pupation behaviors and survivorship of soil-pupating pests.


Assuntos
Lepidópteros/crescimento & desenvolvimento , Pupa/fisiologia , Animais , Comportamento Animal , Larva/crescimento & desenvolvimento , Larva/fisiologia , Lepidópteros/fisiologia , Pupa/crescimento & desenvolvimento , Solo/química , Solo/parasitologia , Chá/parasitologia
5.
J Econ Entomol ; 111(5): 2303-2311, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-29939283

RESUMO

Subterranean termites often transport soil into bait stations. In this study, we hypothesize that adding soil or clay material in the bait may affect preference and performance of termites. Choice and no-choice tests were conducted in the laboratory to investigate the aggregation and feeding preference, survivorship, wood consumption, and body water percentage of termites in response to food containers (here we simulated the bait station by placing a wood block into a bigger plastic box with termite-entering holes on the wall) with the void space filled with soil (sandy clay loam), clay material (sodium bentonite), or remained unfilled. Choice tests showed that under low-moisture conditions, food containers filled with clay attracted significantly more termites (Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) and Reticulitermes guangzhouensis Ping (Blattodea: Rhinotermitidae)) compared to food containers filled with soil, or unfilled. Under medium-moisture conditions, however, the percentages of termites that aggregated in the food containers filled with soil or clay were similar, and both were significant higher than the percentages in unfilled ones. In no-choice tests, the highest survivorship and wood consumption in C. formosanus were recorded under medium-moisture conditions and when food containers were filled with clay, whereas the lowest survivorship and wood consumption were recorded under low-moisture conditions and when food containers were filled with soil. Interestingly, presence of clay increased the body water percentage of termites. Our study enhances the understanding of the foraging ecology of subterranean termites, and may contribute to the improvement of termite-baiting technologies.


Assuntos
Isópteros/fisiologia , Animais , Comportamento de Escolha , Argila , Comportamento Alimentar , Controle de Insetos
6.
PeerJ ; 6: e4513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576978

RESUMO

The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.). The black-winged termite, Odontotermes formosanus (Shiraki), is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min) were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach), individual escaping (single termites moving downward), and massive, unidirectional escaping flows (groups of termites moving downward). Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants) were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans) simultaneously carrying out pathway repairs and emergency evacuation without congestion.

7.
J Econ Entomol ; 111(2): 808-816, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29471445

RESUMO

Previous studies showed that many wood-rotting fungi were attractive to termites; however, little attention has been paid to the relationship between termites and soil fungus. In the present study, different designs of two-choice tests were conducted to investigate the behaviors of two subterranean termites, Coptotermes formosanus Shiraki (wood-feeding lower termites) and Odontotermes formosanus (Shiraki) (fungus-growing higher termites), in response to soil (or sand) treated with the commercial conidial formulations of Trichoderma harzianum Rifai (BioWorks) and Trichoderma viride Pers. ex Fries (Shuiguxin). The short-term (1 d) choice tests showed no significant difference in termite aggregation (C. formosanus and O. formosanus) between treated and untreated soil, regardless of Trichoderma species and concentrations. However, in the long-term choice tests, C. formosanus consumed significantly more wood in the chambers containing soil treated with the conidial formulation of T. viride (1 × 108 conidia/g) than that containing untreated soil. The tunneling choice tests showed that sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) or T. harzianum (1 × 106 conidia/g) significantly increased the tunneling activities of C. formosanus. However, sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) had a repellent effect on O. formosanus. Our study showed that the two subterranean termites behaved differently when responding to the conidial formulations of Trichoderma.


Assuntos
Repelentes de Insetos , Isópteros , Feromônios , Solo , Trichoderma/química , Animais , Dieta , Repelentes de Insetos/farmacologia , Isópteros/efeitos dos fármacos , Feromônios/farmacologia , Especificidade da Espécie , Esporos Fúngicos/química
8.
Environ Entomol ; 46(6): 1365-1373, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29069472

RESUMO

Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied.


Assuntos
Mariposas/crescimento & desenvolvimento , Solo/química , Água/análise , Animais , China , Pupa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA