Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 28(2): 116-123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34874518

RESUMO

OBJECTIVE: To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H2S)-induced acute respiratory distress syndrome (ARDS). METHODS: Sprague-Dawley rats were exposed to H2S (300 ppm) to establish ARDS model, while human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor, 500 µmol/L) to establish cell model. H2S and XBJ were concurrently administered to the rat and cell models. Lung hematoxylin and eosin staining, immunohistochemistry, transmission electron microscopy and wet/dry ratio measurement were used to confirm ARDS induced by H2S in vivo. The expression levels of claudin-5, phosphorylated protein kinase B (p-AKT)/t-AKT and p-forkhead box transcription factor O1 (FoxO1)/t-FoxO1 in vivo and in vitro were also assessed. Paracellular permeability and transepithelial electrical resistance (TEER) were measured to evaluate endothelial barrier function in the cell model. RESULTS: The morphological investigation showed that XBJ attenuated H2S-induced ARDS in rats. XBJ significantly ameliorated both the reduction in TEER and the increased paracellular permeability observed in NaHS-treated HPMECs (P<0.05). The protective effects of XBJ were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3K)/AKT/FoxO1 pathway antagonist (P<0.05). Furthermore, XBJ promoted the expression of claudin-5 and increased the levels of p-AKT and p-FoxO1 in vivo and in vitro (P<0.05). CONCLUSIONS: XBJ ameliorated H2S-induced ARDS by promoting claudin-5 expression via the PI3K/AKT/FoxO1 signaling pathway.


Assuntos
Sulfeto de Hidrogênio , Síndrome do Desconforto Respiratório , Animais , Claudina-5 , Medicamentos de Ervas Chinesas , Células Endoteliais , Fosfatidilinositol 3-Quinases , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/tratamento farmacológico
2.
Int J Mol Sci ; 19(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522441

RESUMO

Adipose tissue plays an important role in energy metabolism. Adipose dysfunction is closely related to obesity and type II diabetes. Glucose uptake is the key step for fat synthesis in adipocyte. miRNAs have been proven to play a crucial role in adipocyte differentiation, adipogenesis and glucose homeostasis. In this paper, we firstly reported that miR-146b decreased glucose consumption by up-regulating miR-146b in a porcine primary adipocyte model, while the inhibitor of endogenous miR-146b rescued the reduction. Then, miR-146b was predicated to target IRS1 by bioinformatics analysis, and a dual-luciferase reporter assay validated this predication. Western blot analyses indicated both IRS1 and glucose transporter type 4 (GLUT4) were down-regulated by miR-146b overexpression. Our study demonstrated that miR-146b regulated glucose homeostasis in porcine primary pre-adipocyte by targeting IRS1, and provided new understandings on regulations of lipogenesis by miRNAs.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/metabolismo , Suínos/metabolismo , Adipogenia/genética , Tecido Adiposo , Animais , Sequência de Bases , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Lipogênese/genética , Cultura Primária de Células , Suínos/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA