Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 176: 41-51, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262072

RESUMO

In recent research, biochar has been proven to reduce the greenhouse gases and promote organic matter during the composting. However, gas degradation may be related to the microstructure of compost. To investigate the mechanism of biochar additive, composting was performed using swine manure, wheat straw and biochar and representative solid compost samples were analyzed to characterize the mixed biochar and compost particles. We focused on the microscale, such as the particle size distributions, surface morphologies, aerobic layer thicknesses and the functional groups. The biochar and compost particle agglomerations gradually became weaker and the predominant particle size in the experiment group was < 200 µm. The aerobic layer thickness (Lp) was determined by infrared spectroscopy using the wavenumbers 2856 and 1568 cm-1, which was 0-50 µm increased as composting proceeded in both groups. The biochar increased Lp and facilitated oxygen penetrating the compost particle cores. Besides, in the biochar-swine manure particle interface, the aliphatic compound in the organic components degraded and the content of aromaticity increased with the composting process, which was indicated by the absorption intensity at 2856 cm-1 decreasing trend and the absorption intensity at 1568 cm-1 increasing trend. In summary, biochar performed well in the microscale of compost pile.


Assuntos
Compostagem , Animais , Suínos , Esterco , Triticum/química , Triticum/metabolismo , Nitrogênio/análise , Solo/química , Carvão Vegetal/química
2.
Small ; 19(29): e2207785, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052516

RESUMO

Supramolecular rather than covalent molecular engineering on Feringa motors can provide an alternative toolkit for tuning the properties of motorized materials through appropriate supramolecular structural perturbations, which are underexplored. Herein, a multicomponent supramolecular gel system is successfully prepared by employing an ultra-low molecular weight gelator and a modulator-Feringa motor. The electron microscopic, spectroscopic, and rheological data revealed that the morphology and mechanical properties of the gel can be tuned via a crystallographic mismatch branching (CMB) mechanism simply by adding varied amounts of motor modulators. Notably, the rotary motion of the motor is preserved in such a multicomponent gel system, and the morphology and rheology of the gel can be further altered by the motor's rotary motion that promotes the structural perturbation, resulting in seldomly seen gel-to-gel transition events. The work shown here offers prospects to utilize a supramolecular perturbation strategy to deliver responsiveness from molecular motors to the corresponding bulk materials.

3.
Chemistry ; 28(59): e202201821, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35869408

RESUMO

We present the construction of a M2 L4 -type metal-organic nanocage featuring four endohedral Feringa's motor motifs and its adaptive encapsulation towards a C60 guest molecule. The structure of the cage, though complicated on the 1 H NMR spectrum due to the adoption of mixed ligands, was unambiguously characterized with a combination of ESI-MS, 2D DOSY, 13 C NMR and particularly the SAXS technique. The molecular motor within the cage demonstrated similar photophysical properties to the uncoordinated one, indicating the motor's function was not compromised when it was anchored in such a confined nanospace. Furthermore, the nanocage showed good guest encapsulation ability towards C60 , and a guest induced-fit behavior of the cage was revealed based on the extensive SAXS analysis and molecular dynamics simulation. The adaptive motorized nanocage reported here represents one of the very few examples of integrating individual motors into a discrete nanoconfined system and offers prospects to achieve its non-equilibrium functions.


Assuntos
Metais , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA