RESUMO
The inflammasome is a conserved structure for the intracellular detection of danger or pathogen signals. As a large intracellular multiprotein signaling platform, it activates downstream effectors that initiate a rapid necrotic programmed cell death (PCD) termed pyroptosis and activation and secretion of pro-inflammatory cytokines to warn and activate surrounding cells. However, inflammasome activation is difficult to control experimentally on a single-cell level using canonical triggers. We constructed Opto-ASC, a light-responsive form of the inflammasome adaptor protein ASC (Apoptosis-Associated Speck-Like Protein Containing a CARD) which allows tight control of inflammasome formation in vivo. We introduced a cassette of this construct under the control of a heat shock element into zebrafish in which we can now induce ASC inflammasome (speck) formation in individual cells of the skin. We find that cell death resulting from ASC speck formation is morphologically distinct from apoptosis in periderm cells but not in basal cells. ASC-induced PCD can lead to apical or basal extrusion from the periderm. The apical extrusion in periderm cells depends on Caspb and triggers a strong Ca2+ signaling response in nearby cells.
Assuntos
Inflamassomos , Peixe-Zebra , Animais , Inflamassomos/metabolismo , Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Apoptose , Piroptose , Caspase 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.
Assuntos
Proteínas Reguladoras de Apoptose , Dipeptidil Peptidases e Tripeptidil Peptidases , Inflamassomos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Proteínas NLR/genética , Peixe-ZebraRESUMO
Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones.