Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871182

RESUMO

The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.

2.
Adv Sci (Weinh) ; : e2401012, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884205

RESUMO

Senescence is a cellular response having physiological and reparative functions to preserve tissue homeostasis and suppress tumor growth. However, the accumulation of senescent cells would cause deleterious effects that lead to age-related dysfunctions and cancer progression. Hence, selective detection and elimination of senescent cells are crucial yet remain a challenge. A ß-galactosidase (ß-gal)-activated boron dipyrromethene (BODIPY)-based photosensitizer (compound 1) is reported here that can selectively detect and eradicate senescent cells. It contains a galactose moiety connected to a pyridinium BODIPY via a self-immolative nitrophenylene linker, of which the photoactivity is effectively quenched. Upon interactions with the senescence-associated ß-gal, it undergoes enzymatic hydrolysis followed by self-immolation, leading to the release of an activated BODIPY moiety by which the fluorescence emission and singlet oxygen generation are restored. The ability of 1 to detect and eliminate senescent cells is demonstrated in vitro and in vivo, using SK-Mel-103 tumor-bearing mice treated with senescence-inducing therapy. The results demonstrate that 1 can be selectively activated in senescent cells to trigger a robust senolytic effect upon irradiation. This study breaks new ground in the design and application of new senolytic agents based on photodynamic therapy.

3.
J Med Chem ; 67(1): 234-244, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113190

RESUMO

Senescent cells have become an important therapeutic target for many age-related dysfunctions and diseases. We report herein a novel nanophotosensitizing system that is responsive to the senescence-associated ß-galactosidase (ß-gal) for selective detection and elimination of these cells. It involves a dimeric zinc(II) phthalocyanine linked to a ß-galactose unit via a self-immolative linker. This compound can self-assemble in aqueous media, forming stable nanoscale particles in which the phthalocyanine units are stacked and self-quenched for fluorescence emission and singlet oxygen production. Upon internalization into senescent HeLa cells, these nanoparticles interact with the overproduced senescence-associated ß-gal inside the cells to trigger the disassembly process through enzymatic cleavage of the glycosidic bonds, followed by self-immolation to release the photoactive monomeric phthalocyanine units. These senescent cells can then be lit up with fluorescence and eliminated through the photodynamic action upon light irradiation with a half-maximal inhibitory concentration of 0.06 µM.


Assuntos
Fotoquimioterapia , Humanos , Células HeLa , Fluorescência , beta-Galactosidase , Indóis/farmacologia , Indóis/química , Senescência Celular
4.
Chem Commun (Camb) ; 59(23): 3471-3474, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36877479

RESUMO

A ß-galactosidase-responsive photosensitiser has been designed and synthesised. It contains a galactosyl substrate, a boron dipyrromethene-based photosensitising unit and a black hole quencher 2 connected via an AB2-type self-immolative linker. This novel photosensitiser can be selectively activated by the senescence-associated ß-galactosidase in senescent cells, leading to restoration in fluorescence emission and effective killing of the cells via photodynamic action.


Assuntos
Galactosidases , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , beta-Galactosidase , Linhagem Celular Tumoral , Senescência Celular
5.
J Control Release ; 353: 663-674, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503072

RESUMO

We report herein a versatile and efficient bioorthogonal strategy to actualise targeted delivery and site-specific activation of photosensitisers for precise antitumoural photodynamic therapy. The strategy involved the use of an isonitrile-caged distyryl boron dipyrromethene-based photosensitiser, labelled as NC-DSBDP, of which the photoactivities could be specifically activated upon conversion of the meso ester substituent to carboxylate initiated by the [4 + 1] cycloaddition with a tetrazine derivative. By using two tetrazines conjugated with a galactose moiety or the GE11 peptide, labelled as gal-Tz and GE11-Tz, we could selectively label the cancer cells overexpressed with the asialoglycoprotein receptor and the epidermal growth factor receptor respectively. Upon encountering the internalised NC-DSBDP, these tetrazines triggered the "ester-to-carboxylate" transformation of this compound, activating its fluorescence and reactive oxygen species generation inside the target cells. The bioorthogonal activation was also demonstrated in vivo, leading to effective photo-eradication of the tumour in nude mice.


Assuntos
Compostos Heterocíclicos , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Camundongos Nus , Compostos Heterocíclicos/química , Neoplasias/tratamento farmacológico
6.
Chempluschem ; 88(2): e202200406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36445036

RESUMO

Invited for this month's cover is the group of Prof. Dennis K. P. Ng at The Chinese University of Hong Kong. The cover picture shows the selective internalization of molecules of a di-galactosyl zinc(II) phthalocyanine into a cancer cell. Upon light irradiation, these molecules are excited and interact with the endogenous oxygen to generate highly reactive singlet oxygen, which oxidatively damages the cellular components, leading to cell death eventually. More information can be found in the Research Article by Dennis K. P. Ng, and co-workers.


Assuntos
Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Zinco , Compostos Organometálicos/farmacologia , Compostos Organometálicos/metabolismo
7.
Chempluschem ; 88(2): e202200285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229229

RESUMO

A series of di-α-substituted zinc(II) phthalocyanines with different number of galactose moieties, ranging from 1 to 8, namely Pc-galn (n=1, 2, 4, and 8) were designed and synthesized. The synthesis involved the copper-catalyzed azide-alkyne cycloaddition reaction of a mono- or dialkynyl zinc(II) phthalocyanine with an acetyl-protected galactosyl azide or its dendritic derivative with four acetyl-protected galactosyl groups, followed by removal of the acetyl protecting groups via alkaline hydrolysis. In N,N-dimethylformamide, these oligogalactosyl phthalocyanines were non-aggregated as shown by the strong Q-band absorption and fluorescence emission. Owing to the di-α-substitution, they also behaved as efficient singlet oxygen generators upon light irradiation with a singlet oxygen quantum yield of 0.84. The spectroscopic and photophysical properties were not affected by the number of galactosyl units. In contrast, the compounds became significantly aggregated and quenched in phosphate-buffered saline. Their cellular uptake was then studied using a range of cell lines, which generally followed the order Pc-gal1 >Pc-gal2 ≈Pc-gal4 >Pc-gal8 . Interestingly, the di-galactosyl analogue exhibited selective uptake against HeLa human cervical carcinoma cells through an energy-dependent pathway instead of the expected asialoglycoprotein receptor. Upon light irradiation, it could effectively kill the cells with a half-maximal inhibitory concentration of 0.58 µM.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Humanos , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/metabolismo , Zinco/química , Azidas , Células HeLa
8.
J Am Chem Soc ; 144(23): 10647-10658, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35639988

RESUMO

Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an o-phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH2 through site-specific dibenzylation with the two cysteine residues and further coupling with ß-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified ß-galactosidase readily, which could be internalized selectively into αvß3 integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the ß-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated in vivo using nude mice bearing an αvß3 integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native ß-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Integrina beta3 , Camundongos , Camundongos Nus , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , beta-Galactosidase
9.
Bioorg Med Chem Lett ; 19(16): 4574-8, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19625188

RESUMO

A series of nitrogen-containing polyhydroxylated aromatics from caffeic acid phenethyl ester were designed and synthesized as HIV-1 integrase inhibitors. Most of these compounds exhibited potent inhibitory activities at micromolar concentrations against HIV-1 integrase in the 3'-end processing and the strand transfer. Their key structure-activity relationship was also discussed.


Assuntos
Ácidos Cafeicos/química , Inibidores de Integrase de HIV/síntese química , Integrase de HIV/química , Álcool Feniletílico/análogos & derivados , Desenho de Fármacos , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Humanos , Nitrogênio/química , Álcool Feniletílico/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA