Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 373: 640-651, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084467

RESUMO

Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.


Assuntos
Neoplasias Ósseas , Nanoestruturas , Neoplasias Ósseas/secundário , Humanos , Animais , Nanoestruturas/administração & dosagem , Nanoestruturas/uso terapêutico , Microambiente Tumoral , Regeneração Óssea
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124517, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38801790

RESUMO

The effects of common migration substances in milk packaging on digestive protease were studied. We choose the common migrants found in eight types of multi-layer composite milk packaging. Enzyme activity experiments revealed that pepsin activity decreased by approximately 18 % at 500 µg/mL of stearic acid and stearamide treatment, while trypsin activity decreased by approximately 18 % only by stearic acid treatment (500 µg/mL). Subsequently, fluorescence spectroscopy, circular dichroism spectroscopy, and molecular docking technology were employed to investigate the inhibition mechanism of protease activity by migrating substances in three systems: stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin. Results showed that the inhibitory effect of stearic acid on trypsin is a reversible mixed inhibition, whereas the inhibitory effects of stearic acid and stearamide on pepsin are non-competitive. In all three systems, ΔH < 0, ΔS < 0, and ΔG < 0, indicating the binding process between the migrant and the protease is a spontaneous exothermic process primarily driven by hydrogen bonding and van der Waals forces. In addition, their binding constants are all around 104 L/moL, indicating that there are moderate binding affinities exist between migrants and proteases. The binding process results in the quenching of the protease's endogenous fluorescence and induces alterations in the enzyme's secondary structure. Synchronized fluorescence spectroscopy showed that stearic acid enhanced the hydrophobicity near the Tyr residue of trypsin. The molecular docking results indicated that the binding affinity of stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin was -22.51 kJ/mol, -12.35 kJ/mol, -19.28 kJ/mol respectively, which consistent with the trend in the enzyme activity results. This study can provide references for the selection of milk packaging materials and the use of processing additives, ensuring food health and safety.


Assuntos
Embalagem de Alimentos , Leite , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Tripsina , Animais , Leite/química , Tripsina/metabolismo , Tripsina/química , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Pepsina A/metabolismo , Pepsina A/química , Dicroísmo Circular , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Termodinâmica
3.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676038

RESUMO

Nanopore sensor technology is widely used in biomolecular detection due to its advantages of low cost and easy operation. In a variety of nanopore manufacturing methods, controlled dielectric breakdown has the advantages of a simple manufacturing process and low cost under the premise of ensuring detection performance. In this paper, we have made enhancements to the applied pulses in controlled dielectric breakdown and utilized the improved dielectric breakdown technique to fabricate silicon nitride nanopores with diameters of 5 to 15 nm. Our improved fabrication method offers the advantage of precise control over the nanopore diameter (±0.4 nm) and enhances the symmetry of the nanopore. After fabrication, we performed electrical characterization on the nanopores, and the IV characteristics exhibited high linearity. Subsequently, we conducted detection experiments for DNA and protein using the prepared nanopores to assess the detection performance of the nanopores fabricated using our method. In addition, we also give a physical model of molecule translocation through the nanopores to give a reasonable explanation of the data processing results.


Assuntos
Técnicas Biossensoriais , DNA , Nanoporos , Compostos de Silício , Compostos de Silício/química , Técnicas Biossensoriais/métodos , DNA/química , Proteínas/química , Nanotecnologia/métodos
4.
Angew Chem Int Ed Engl ; 63(2): e202315782, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38018480

RESUMO

Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Linfócitos T , Antígenos de Neoplasias , Neoplasias/metabolismo , Ovalbumina , Membrana Celular , Células Dendríticas/metabolismo
5.
Angew Chem Int Ed Engl ; 62(21): e202301147, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36961090

RESUMO

Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Epitopos de Linfócito B/química , Peptídeos , Vacinas de Subunidades Antigênicas
6.
Biomaterials ; 296: 122048, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842237

RESUMO

A variety of bioactive materials are currently developed to expand T cells ex vivo for adoptive T cell immunotherapy, also known as called artificial antigen-presenting cells (aAPCs). However, almost all the reported designs exhibit relatively smooth surface modified with T cell activating biomolecules, and therefore cannot well mimic the dendritic morphological characteristics of dendritic cells (DCs), the most important type of natural antigen-presenting cells (APCs) with high specific surface areas. Here, we propose a hydrophilic monomer-mediated surface morphology control strategy to synthesize biocompatible dendritic poly(N-isopropylacrylamide) (PNIPAM) microspheres for constructing aAPCs with surface morphology mimicking natural APCs (e.g., DCs). Interestingly, when maintaining the same ligands density, dendritic polymeric microspheres-based aAPCs (DPM beads) can more efficiently expand CD8+ T cells than that with smooth surfaces. Moreover, adoptive transfer of antigen-specific CD8+ T cells expanded by the DPM beads show significant antitumor effect of B16-OVA tumor bearing mice. Therefore, we provide a new concept for constructing biomimetic aAPCs with enhanced T cell expansion ability.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Biomimética , Microesferas , Células Apresentadoras de Antígenos/metabolismo , Imunoterapia Adotiva , Neoplasias/metabolismo , Imunoterapia
7.
J Am Chem Soc ; 144(17): 7634-7645, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438987

RESUMO

Artificial antigen-presenting cells (aAPCs) constructed by integrating T cell activation ligands on biocompatible materials hold great potential in tumor immunotherapy. However, it remains challenging to develop aAPCs, which could mimic the characteristics of natural APCs, thereby realizing antigen-specific T cells activation in vivo. Here, we report the first effort to construct natural lymphocyte-based homologous targeting aAPCs (LC-aAPCs) with lipid-DNA-mediated noninvasive live cell surface engineering. Through a predesigned bottom-up self-assembly path, we achieved natural-APC-mimicking distribution of T cell activation ligands on LC-aAPCs, which would enable the optimized T cell activation. Moreover, the lipid-DNA-mediated self-assembly occurring on lipid bilayers would not affect the functions of homing receptors expressed on lymphocyte. Therefore, such LC-aAPCs could actively migrate to peripheral lymphatic organs and then effectively activate antigen-specific T cells. Combined with an immune checkpoint inhibitor, such LC-aAPCs could effectively inhibit the growth of different tumor models. Thus, our work provides a new design of aAPCs for in vivo applications in tumor immunotherapy, and the lipid-DNA-mediated noninvasive live cell surface engineering would be a powerful tool for designing cell-based therapeutics.


Assuntos
Células Artificiais , Neoplasias , Células Apresentadoras de Antígenos , DNA/metabolismo , Humanos , Imunoterapia , Ligantes , Lipídeos , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T
8.
Adv Mater ; 33(18): e2007910, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33788339

RESUMO

Certain chemotherapeutics and forms of ionizing radiation can induce immunogenic cell death (ICD). If there simultaneously exist immune adjuvants within the tumor, such antitumor immunity would be further amplified. However, as clinical chemo/radiotherapies are usually repeatedly given at low individual doses, it would be impractical to administrate immune adjuvants into tumors at each dose of chemo/radiotherapies. Thus, a smart hydrogel is developed that releases immune adjuvants in response to repeatedly applied chemo-/radiotherapies. Herein, alginate is conjugated with an adenosine triphosphate (ATP)-specific aptamer, which is hybridized with immunoadjuvant CpG oligonucleotide. Upon intratumoral injection, alginate-based hydrogel is formed in situ. Interestingly, low doses of oxaliplatin or X-rays, while inducing ICD of tumor cells, could trigger release of ATP, which competitively binds with ATP-specific aptamer to trigger CpG release. Therefore, the smart hydrogel could release the immune adjuvant synchronized with low-dose repeated chemo/radiotherapies, achieving remarkable synergistic responses in eliminating established tumors, as well as immune memory to reject re-challenged tumors. Moreover, repeated radiotherapies assisted by the smart hydrogel could inhibit distant tumor metastases, especially in combination with immune checkpoint blockade. The study presents a conceptually new strategy to boost cancer immunotherapy coherent with repeated low-dose chemo-/radiotherapies following a clinically relevant manner.


Assuntos
Trifosfato de Adenosina/metabolismo , Adjuvantes Imunológicos , Hidrogéis , Animais , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Doxorrubicina/farmacologia , Humanos , Imunoterapia
9.
Nat Commun ; 10(1): 3521, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387993

RESUMO

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


Assuntos
Antígenos CD36/metabolismo , LDL-Colesterol/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Receptores Depuradores/metabolismo , Animais , Antígenos CD36/genética , Células CHO , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cricetulus , Fibroblastos , Técnicas de Inativação de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Proteínas de Membrana Lisossomal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteína C1 de Niemann-Pick , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Receptores Depuradores/genética
10.
PLoS One ; 12(11): e0187471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29136028

RESUMO

The automatic generation of test cases oriented paths in an effective manner is a challenging problem for structural testing of software. The use of search-based optimization methods, such as genetic algorithms (GAs), has been proposed to handle this problem. This paper proposes an improved adaptive genetic algorithm (IAGA) for test cases generation by maintaining population diversity. It uses adaptive crossover rate and mutation rate in dynamic adjustment according to the differences between individual similarity and fitness values, which enhances the exploitation of searching global optimum. This novel approach is experimented and tested on a benchmark and six industrial programs. The experimental results confirm that the proposed method is efficient in generating test cases for path coverage.


Assuntos
Algoritmos , Software , Benchmarking
11.
J Mol Biol ; 428(15): 3026-42, 2016 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-27349982

RESUMO

Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.


Assuntos
Saposinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Domínio Catalítico/fisiologia , Humanos , Hidrólise , Lipídeos/fisiologia , Lisossomos/metabolismo , Membranas/metabolismo , Prolina/metabolismo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA