Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 395, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945501

RESUMO

BACKGROUND: Mei (Prunus mume) is the only woody plant in the genus Prunus with a floral fragrance, but the underlying mechanisms of aroma compound biosynthesis are unclear despite being a matter of considerable interest. RESULTS: The volatile contents of the petals of two cultivars with significantly different aromas, Prunus mume 'Xiao Lve' and Prunus mume 'Xiangxue Gongfen', were characterised by GC-MS at different flowering periods, and a total of 44 volatile compounds were detected. Among these, the main substances forming the typical aroma of P. mume were identified as eugenol, cinnamyl acetate, hexyl acetate and benzyl acetate, with variations in their relative concentrations leading to sensory differences in the aroma of the two cultivars. We compiled a transcriptome database at key stages of floral fragrance formation in the two cultivars and used it in combination with differential analysis of floral volatiles to construct a regulatory network for the biosynthesis of key aroma compounds. The results indicated that PmPAL enzymes and PmMYB4 transcription factors play important roles in regulating the accumulation of key biosynthetic precursors to these compounds. Cytochrome P450s and short-chain dehydrogenases/reductases might also influence the biosynthesis of benzyl acetate by regulating production of key precursors such as benzaldehyde and benzyl alcohol. Furthermore, by analogy to genes with verified functions in Arabidopsis, we predicted that three PmCAD genes, two 4CL genes, three CCR genes and two IGS genes all make important contributions to the synthesis of cinnamyl acetate and eugenol in P. mume. This analysis also suggested that the downstream genes PmBGLU18-like, PmUGT71A16 and PmUGT73C6 participate in regulation of the matrix-bound and volatile states of P. mume aroma compounds. CONCLUSIONS: These findings present potential new anchor points for further exploration of floral aroma compound biosynthesis pathways in P. mume, and provide new insights into aroma induction and regulation mechanisms in woody plants.


Assuntos
Prunus , Eugenol/análise , Eugenol/metabolismo , Perfilação da Expressão Gênica , Odorantes/análise , Prunus/genética , Prunus/metabolismo , Transcriptoma
2.
Biol Chem ; 395(6): 679-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713573

RESUMO

Existent nucleic acid isothermal detection techniques for clinical diseases are difficult to promote greatly due to limitations in such aspects as methodology, costs of detection, amplification efficiency and conditions for operation. There is therefore an urgent need for a new isothermal amplification method with the characteristics of high accuracy, easy operation, short time of detection and low costs. We have devised a new method of nucleic acid isothermal amplification using Bst DNA polymerase under isothermal conditions (60-65°C). We call this method of amplification by shortening the distance between forward and reverse primers for nucleic acid isothermal amplification SDAMP. The results demonstrated that this technique is highly sensitive, specific and has short reaction times (40-60 min). Results of sequencing show that the products of SDAMP amplification are mainly polymers formed by series connection of monomers formed through linkage of forward primer and complementary sequences in reverse primer via a few bases. The method is different from current methods of nucleic acid amplification. Our study shows, however, that it is a specific method of nucleic acid isothermal amplification depending on interactions between primers and DNA template.


Assuntos
Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Polimerase III , Replicação do DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA