Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Immunopharmacol Immunotoxicol ; 46(3): 385-394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622049

RESUMO

CONTEXT: Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated. OBJECTIVE: To elucidate the mechanism regulating CCL2 in HA. METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study. RESULTS: CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2. CONCLUSION: Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.


Assuntos
Quimiocina CCL2 , Hemangioma , MicroRNAs , Neovascularização Patológica , Humanos , MicroRNAs/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Hemangioma/genética , Hemangioma/patologia , Hemangioma/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/biossíntese , Oxirredutases do Álcool/genética , Proliferação de Células/fisiologia , Movimento Celular/genética , Progressão da Doença , RNA Longo não Codificante/genética , Proteínas de Ligação a DNA/genética , Angiogênese
2.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592766

RESUMO

α-Linolenic acid (ALA) is an important nutrient component in rapeseed oil, and rapeseed breeders want to either restrain or enhance the function of fatty acid desaturases (FADs) in the ALA biosynthesis pathway. To determine the reason for the upregulation of rapeseed BnFAD genes in two high-ALA accessions, R8Q10 and YH25005, we compared their transcriptome profiles in the seed at 24 days after pollination (DAP) with those of two low-ALA lines, A28 and SW. The expression levels of twenty-eight important genes in the seed samples at 20, 27, and 34 DAP were also investigated using an RT-qPCR. The expression levels of genes involved in flavonoid and proanthocyanidin synthesis, including BnCHS, BnCHI, BnDFR, BnFLS1, BnLDOX, BnBAN, BnTT10, and BnTT12 and genes encoding the transcription factors BnTT1, BnTT2, BnTT8, and BnTT16 were lower in R8Q10 and YH25005 than in A28 and SW. The expression levels of genes encoding master transcription factors in embryo development, such as BnLEC1, BnABI3, BnFUS3, BnL1L, BnAREB3, and BnbZIP67, were elevated significantly in the two high-ALA accessions. Combined with previous results in the Arabidopsis and rapeseed literature, we speculated that the yellow-seededness genes could elevate the activity of BnLEC1, BnABI3, BnFUS3, and BnbZIP67, etc., by reducing the expression levels of several transparent testa homologs, resulting in BnFAD3 and BnFAD7 upregulation and the acceleration of ALA synthesis. Yellow-seededness is a favorable factor to promote ALA synthesis in the two high-ALA accessions with the yellow-seeded trait. These findings provide initial insights into the transcriptomic differences between high-/low-ALA germplasms and a theoretic basis for seed quality breeding.

3.
J Plant Physiol ; 294: 154187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422630

RESUMO

Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.


Assuntos
Brassica napus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Brassica napus/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338852

RESUMO

Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard "Wuqi" and brown seed mustard "Wugong" was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G' analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome "T84-66" (brown-seed) and "AU213" (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Mostardeira/genética , Melhoramento Vegetal , Brassica napus/genética , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Flavonoides/metabolismo , Análise de Sequência de RNA
5.
Front Plant Sci ; 14: 1166933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260937

RESUMO

Progression of leaf senescence consists of both degenerative and nutrient recycling processes in crops including wheat. However, the levels of metabolites in flag leaves in spring-cultivated wheat, as well as biosynthetic pathways involved under different nitrogen fertilization regimes, are largely unknown. Therefore, the present study employed a widely untargeted metabolomic profiling strategy to identify metabolites and biosynthetic pathways that could be used in a wheat improvement program aimed at manipulating the rate and onset of senescence by handling spring wheat (Dingxi 38) flag leaves sampled from no-, low-, and high-nitrogen (N) conditions (designated Groups 1, 2, and 3, respectively) across three sampling times: anthesis, grain filling, and end grain filling stages. Through ultrahigh-performance liquid chromatography-tandem mass spectrometry, a total of 826 metabolites comprising 107 flavonoids, 51 phenol lipids, 37 fatty acyls, 37 organooxygen compounds, 31 steroids and steroid derivatives, 18 phenols, and several unknown compounds were detected. Upon the application of the stringent screening criteria for differentially accumulated metabolites (DAMs), 28 and 23 metabolites were differentially accumulated in Group 1_vs_Group 2 and Group 1_vs_Group 3, respectively. From these, 1-O-Caffeoylglucose, Rhoifolin, Eurycomalactone;Ingenol, 4-Methoxyphenyl beta-D-glucopyranoside, and Baldrinal were detected as core conserved DAMs among the three groups with all accumulated higher in Group 1 than in the other two groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that tropane, piperidine, and pyridine alkaloid biosynthesis; acarbose and validamycin biosynthesis; lysine degradation; and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 2, while flavone and flavonol as well as anthocyanins biosynthetic pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 3. The results from this study provide a foundation for the manipulation of the onset and rate of leaf senescence and N remobilization in wheat.

6.
Plant Cell Rep ; 42(6): 1039-1057, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076701

RESUMO

KEY MESSAGE: Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.


Assuntos
Brassica napus , Brassica napus/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo , Cloreto de Sódio
7.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555533

RESUMO

Salt stress severely affects crop growth and development and reduces the yield of Brassica napus. Exploring natural genetic variations for high salt tolerance in B. napus seedlings is an effective approach to improve productivity under salt stress. Using 10,658 high-quality single nucleotide polymorphic (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, genome-wide association studies (GWAS) were performed to investigate the genetic basis of salt tolerance and yield-related traits of B. napus. The results revealed that 77 and 497 SNPs were significantly associated with salt tolerance and yield-related traits, of which 40 and 58 SNPs were located in previously reported QTLs/SNPs, respectively. We identified nineteen candidate genes orthologous with Arabidopsis genes known to be associated with salt tolerance and seven potential candidates controlling both salt tolerance and yield. Our study provides a novel genetic resource for the breeding of high-yield cultivars resistant to salt stress.


Assuntos
Arabidopsis , Brassica napus , Estudo de Associação Genômica Ampla , Brassica napus/genética , Germinação/genética , Tolerância ao Sal/genética , Sementes/genética , Melhoramento Vegetal , Arabidopsis/genética
8.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077359

RESUMO

Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Brassica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascomicetos/genética , Brassica/genética , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transcriptoma
9.
Microorganisms ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36013997

RESUMO

Bacterial diversity and its functions are essential to soil health. N fertilization changes bacterial communities and interferes with the soil biogeochemical N cycle. In this study, bacterial community and soil physicochemical properties were studied in 2018 after applying N fertilizers (0, 52.5, 105, 157.5, and 210 kg N ha-1) for a long (2003-2018) and a short (2003-2004) duration in a wheat field on the Loess Plateau of China. Soil bacteria were determined using 16S rRNA Illumina-MiSeq®, and the prediction function was analyzed through PICRUSt. The study showed that N fertilizer significantly changed the diversity and abundance of bacterial communities. The phyla Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were most abundant, accounting for 74-80% of the bacterial community abundance. The optimum rates of N fertilizer application (N105) maintain soil health by promoting soil microbial diversity and abundance. The bacterial population abundance was higher after short-term N application than after N application for a long duration and lowest with the high N-fertilizer treatment (N210). High N enrichment led to more heterotrophic N-fixing microorganisms (Alphaproteobacteria), in which metabolism and genetic information processing dominated, while cellular processes, genetic information processing, metabolism, and organismal systems were the main functional categories under low N. The phyla Gemmatimonadetes, Actinobacteria, Bacteroidetes, and Chloroflexi were the key bacteria in the co-occurrence network. The genus Saccharimonadales of the superphylum Patescibacteria has a more significant impact under low N treatment. Long-term N fertilization affected the soil pH, NO3-N, and other physicochemical properties, and soil NO3-N was the highest indicator, contributing 81% of the bacterial community function under different N fertilizer treatments.

10.
Genes (Basel) ; 13(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36011404

RESUMO

Soil salt alkalization is one major abiotic factor reducing the productivity of crops, including rapeseed, an indispensable oil crop and vegetable. The mechanism studies of alkali salt tolerance can help breed highly resistant varieties. In the current study, rapeseed (B. napus) line 2205 exhibited more tolerance to alkaline salt than line 1423 did. In line 2205, the lesser plasma membrane damage index, the accumulated osmotic solute, and higher antioxidant enzyme activities contributed to alkaline tolerance. A more integrated mesophyll-cell structure was revealed under alkali salt stress by ultrastructure observation in line 2205, which also implied a lesser injury. Transcriptome analysis showed that more genes responded to alkaline salt in line 2205. The expression of specific-response genes in line 1423 was lower than in line 2205. However, most of the specific-response genes in line 2205 had higher expression, which was mainly enriched in carbohydrate metabolism, photosynthetic processes, ROS regulating, and response to salt stress. It can be seen that the tolerance to alkaline salt is attributed to the high expression of some genes in these pathways. Based on these, twelve cross-differentially expressed genes were proposed as candidates. They provide clues for further analysis of the resistance mechanism of rapeseed.


Assuntos
Brassica napus , Álcalis/metabolismo , Brassica napus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Transcriptoma/genética
11.
Genes (Basel) ; 13(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893035

RESUMO

Plasmodiophora brassicae infection leads to hypertrophy of host roots and subsequent formation of galls, causing huge economic losses to agricultural producers of Cruciferae plants. Ethylene (ET) has been reported to play a vital role against necrotrophic pathogens in the classic immunity system. More clues suggested that the defense to pathogens in roots may be different from the acrial. The ET pathway may play a positive role in the infection of P. brassicae, as shown by recent transcriptome profiling. However, the molecular basis of ET remains poorly understood. In this study, we investigated the potential role of ethylene against P. brassicae infection in an ein3/eil1 double-mutant of Arabidopsis thaliana (A. thaliana). After infection, ein3/eil1 (Disease Index/DI: 93) showed more susceptibility compared with wild type (DI: 75). Then, we inoculated A. thaliana Columbia-0 (Col-0) with P. brassicae by 1-aminocyclopropane-1-carboxylic acid (ACC) and pyrazinamide (PZA), respectively. It was found that the symptoms of infected roots with ACC were more serious than those with PZA at 20 dpi (day post infection). However, the DI were almost the same in different treatments at 30 dpi. WRKY75 can be directly regulated by ET and was upregulated at 7 dpi with ACC, as shown by qRT-PCR. The wrky75-c mutant of A. thaliana (DI: 93.75) was more susceptible than the wild type in Arabidopsis. Thus, our work reveals the dual roles of ET in infection of P. brassicae and provides evidence of ET in root defense against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plasmodioforídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35270425

RESUMO

Ammonia oxidizing archaea (AOA) and bacteria (AOB) mediate a crucial step in nitrogen (N) metabolism. The effect of N fertilizer rates on AOA and AOB communities is less studied in the wheat-fallow system from semi-arid areas. Based on a 17-year wheat field experiment, we explored the effect of five N fertilizer rates (0, 52.5, 105, 157.5, and 210 kg ha-1 yr-1) on the AOA and AOB community composition. This study showed that the grain yield of wheat reached the maximum at 105 kg N ha-1 (49% higher than control), and no further significant increase was observed at higher N rates. With the increase of N, AOA abundance decreased in a regular trend from 4.88 × 107 to 1.05 × 107 copies g-1 dry soil, while AOB abundance increased from 3.63 × 107 up to a maximum of 8.24 × 107 copies g-1 dry soil with the N105 treatment (105 kg N ha-1 yr-1). Application rates of N fertilizer had a more significant impact on the AOB diversity than on AOA diversity, and the highest AOB diversity was found under the N105 treatment in this weak alkaline soil. The predominant phyla of AOA and AOB were Thaumarchaeota and Proteobacteria, respectively, and higher N treatment (N210) resulted in a significant decrease in the relative abundance of genus Nitrosospira. In addition, AOA and AOB communities were significantly associated with grain yield of wheat, soil potential nitrification activity (PNA), and some soil physicochemical parameters such as pH, NH4-N, and NO3-N. Among them, soil moisture was the most influential edaphic factor for structuring the AOA community and NH4-N for the AOB community. Overall, 105 kg N ha-1 yr-1 was optimum for the AOB community and wheat yield in the semi-arid area.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fertilização , Fertilizantes , Nitrogênio/metabolismo , Oxirredução , Filogenia , Solo/química , Microbiologia do Solo
13.
Genomics ; 114(2): 110271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065192

RESUMO

The present study was undertaken to profile transcriptional changes in flag leaves between anthesis and end of grain filling stages of rainfed spring wheat cultivar under varying nitrogen (N) application rates: 0 kg/ha (NN), 52.5 kg/ha (LN), and 210 kg/ha (HN). A total of 4485 and 4627 differentially expressed genes (DEGs) were detected in LN and HN, respectively. The differential application of N altered several pathways; including plant hormone signal transduction, mitogen-activated protein kinase signaling pathway-plant, photosynthesis, phenylpropanoid biosynthesis and ATP-binding cassette transporters. Jasmonic acid, abscisic acid, salicylic acid and brassinosteroid related genes promoted leaf senescence in NN or LN, whereas auxin, gibberellin acid and cytokinins genes inhibited leaf senescence in HN. Major transcription factors: auxin/indole-3-acetic acid (AUX/IAA), no apical meristem (NAC) and WRKY expressed higher in either HN or LN than NN. The DEGs, pathways and transcription factors provide valuable insight for manipulation of leaf senescence and N remobilization in wheat.


Assuntos
Fatores de Transcrição , Triticum , Vias Biossintéticas , Fertilização , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Triticum/genética , Triticum/metabolismo
14.
Dis Markers ; 2021: 6256369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616498

RESUMO

Currently, plenty of researches have revealed that long noncoding RNAs (lncRNAs) can act as crucial roles during the progression of various tumors, including hepatocellular carcinoma (HCC). Here, we measured the expression of lncRNA BAIAP2 antisense RNA 1(BAIAP2-AS1) as well as its contribution to the developments of HCC. In this study, the expressions of BAIAP2-AS1 and SOX4 were distinctly upregulated in HCC cells and tissues, and high BAIAP2-AS1 may be a novel biomarker for HCC. E2F1 activated BAIAP2-AS1 expression. The silence of BAIAP2-AS1 inhibited the proliferation and metastasis of HepG2 and PLC5 cells. Assays for relationship verification showed that BAIAP2-AS1 regulated the expression of SOX4 and miR-361-3p. Rescue experiments further confirmed the positive interaction between miR-361-3p and BAIAP2-AS1 as well as between miR-361-3p and SOX4. Overall, BAIAP2-AS1 modulated the miR-361-3p/SOX4 axis to promote the development of HCC. Thus, our study offers a potential therapeutic target for treating HCC.


Assuntos
Carcinoma Hepatocelular/genética , Fator de Transcrição E2F1/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Regulação para Cima
15.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632865

RESUMO

Escherichia coli strain FEX669 was isolated from retail ground chicken and shown to contain the extraintestinal pathogenic E. coli (ExPEC) virulence genes sfaD, focC, and iutA Because this presumptive ExPEC strain was isolated from a retail food item and it was a weak biofilm former, it was characterized using whole-genome sequencing using the PacBio RS II platform. Genomic analysis showed that the FEX669 chromosome is 4,973,943 bp long, with a GC content of 50.47%, and is accompanied by a ColV plasmid that is 237,102 bp long, with a GC content of 50.49%.

16.
Breed Sci ; 70(3): 387-395, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714062

RESUMO

Powdery mildew (PM), caused by Erysiphe cruciferarum, is an epidemic of oil rapeseed (Brassica napus L.) growing worldwide, but PM resistant germplasm is rare in this species. We screened 102 accessions of B. napus and other cruciferous species and found an Ethiopian mustard (Brassica carinata) cultivar 'White flower' immune to PM in both the field and greenhouse. Outcrossing in the female parent 'White flower' was promoted by using a chemical gametocide tribenuron-methyl, to obtain hybrid seeds of distant hybridization with an elite B. napus cultivar 'Zhongshuang11'. Three true F1 hybrids with B. carinata cytoplasm were obtained without using embryo rescue, which showed complete male sterility and light yellow petals. The hybrid plants and the progenies derived from backcrossing were validated using morphological traits, seed quality, and molecular markers. Five lines in the BC1F3 generation, named 'W7-1', 'W7-4', 'W7-6', 'W8-1', and 'W8-3', and one BC2F2 line 'W3PS-1', whose young leaf was yellow green, were identified to be resistant or moderately resistant to PM. The seed quality and some morphological traits of these lines resembled the parent 'Zhongshuang11', indicating that the resistance gene(s) has been preliminarily introduced into B. napus.

17.
Food Microbiol ; 89: 103412, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32138983

RESUMO

Pre-harvest testing is increasingly used to enhance the microbial safety of fresh produce. Traditional sampling assumes that sample collectors have no information on potential contamination sources. Knowledge of such factors could potentially increase the effectiveness of pre-harvest sampling programs. Simulation modeling and field validation trials were used to evaluate a hybrid "Samples of Opportunity" (SOO) sampling method that included a portion of the samples based on the sampler's knowledge of risk factors in pre-harvest produce fields. Relative effectiveness of SOO sampling was compared with three traditional sampling methods. These evaluations were based on three non-random contamination scenarios. The mean detection probability of SOO is 96% higher than traditional sampling methods (p < 0.001). However, if the site of actual contamination is offset from assumed area of contamination, the detection probability of SOO sampling drops, and becomes similar or even worse than that achieved by the other sampling methods. Preliminary field validation trials indicated indeed that SOO performed better than the other three sampling methods. This study provides a mathematical approach for evaluating the effectiveness of four pre-harvest sampling methods, and suggests that having a priori knowledge of the contamination source in the field would improve effectiveness of sampling, particularly if done using a standardized protocol.


Assuntos
Bactérias/isolamento & purificação , Simulação por Computador , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Probabilidade , Microbiologia do Solo
18.
BMC Plant Biol ; 20(1): 69, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046649

RESUMO

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS: OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfuron-ethyl (150-225 mg/ha), nicosulfuron (200-300 mg/ha), imazethapyr (750-1125 mg/ha), and imazamox (400-800 mg/ha), could induce over 90% male sterility and over 60% relative outcrossed seed set in six cultivars with different origins. These eight chemicals could be used as new gametocides for hybrid seed production. This study also examined the possibility of external application of these gametocides on several unstable Polima cytoplasmic male sterile and thermosensitive genic male sterile lines. Although the outcrossed seed set of the treated lines was slightly reduced, the gametocide application significantly increased the seed purity of the resulting hybrid. CONCLUSION: The finding of the gametocidal effects of most sulfonylureas and imidazolinones are of great importance for developing new functions for ALS-inhibiting herbicides. The application of gametocides will also greatly promote the safe utilization of environment-sensitive male sterility in hybrid seed production. Unexpectedly, the application of three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.


Assuntos
Brassica napus/efeitos dos fármacos , Herbicidas/administração & dosagem , Imidazóis/administração & dosagem , Sementes/efeitos dos fármacos , Compostos de Sulfonilureia/administração & dosagem , Brassica napus/genética , Brassica napus/fisiologia , Cruzamentos Genéticos , Hibridização Genética , Reprodução , Sementes/genética , Sementes/fisiologia
19.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974156

RESUMO

Here, we report the draft genome sequence of Halomonas eurihalina MS1, which was isolated from saline soil in Alicante, Spain, and causes the condition known as "red heat" in salt-packed cured hides, decreasing their commercial value for leather production.

20.
Genes (Basel) ; 11(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935825

RESUMO

Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.


Assuntos
Galactosiltransferases/genética , Gossypium/genética , Pectinas/genética , Galactosiltransferases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Família Multigênica/genética , Pectinas/biossíntese , Filogenia , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA