Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(24): 9617-9623, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32147901

RESUMO

A protein Pascal triangle has been constructed as new type of supramolecular architecture by using the inducing ligand strategy that we previously developed for protein assemblies. Although mathematical studies on this famous geometry have a long history, no work on such Pascal triangles fabricated from native proteins has been reported so far due to their structural complexity. In this work, by carefully tuning the specific interactions between the native protein building block WGA and the inducing ligand R-SL, a 2D Pascal-triangle lattice with three types of triangular voids has been assembled. Moreover, a 3D crystal structure was obtained based on the 2D Pascal triangles. The distinctive carbohydrate binding sites of WGA and the intralayer as well as interlayer dimerization of RhB was the key to facilitate nanofabrication in solution. This strategy may be applied to prepare and explore various sophisticated assemblies based on native proteins.

2.
J Am Chem Soc ; 136(12): 4732-9, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24580564

RESUMO

Amyloid fibrils are implicated in over 20 neurodegenerative diseases. The mechanisms of fibril structuring and formation are not only of medical and biological importance but are also relevant for material science and nanotechnologies due to the unique structural and physical properties of amyloids. We previously found that hen egg white lysozyme, homologous to the disease-related human lysozyme, can form left-handed giant ribbons, closing into nanotubes. By using matrix-assisted laser desorption ionization mass spectrometry analysis, we here identify a key component of such structures: the ILQINS hexapeptide. By combining atomic force microscopy and circular dichorism, we find that this fragment, synthesized by solid-phase peptide synthesis, also forms fibrillar structures in water at pH 2. However, all fibrillar structures formed possess an unexpected right-handed twist, a rare chirality within the corpus of amyloid experimental observations. We confirm by small- and wide-angle X-ray scattering and molecular dynamics simulations that these fibrils are composed of conventional left-handed ß-sheets, but that packing stresses between adjacent sheets create this twist of unusual handedness. We also show that the right-handed fibrils represent a metastable state toward ß-sheet-based microcrystals formation.


Assuntos
Muramidase/química , Nanotubos/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Cinética , Simulação de Dinâmica Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Temperatura
3.
Chem Asian J ; 8(9): 2003-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729407

RESUMO

Chiral polymers with simple chemical structures and high helical conformation stabilities are important for their applications as chiral supports and asymmetrical catalysts. We report herein the synthesis of a series of aliphatic polyisocyanides carrying proline pendants of different chiralities, and an investigation of the effects of the chemical structures of these pendants on the chiroptical properties of the polymers. The configuration of the chiral center at the 4-position of the proline pendants was changed from S to R to check its effect on the handedness of the helical conformation. To examine the effects of steric hindrance on the stabilities of the helical conformation for these aliphatic representatives, proline pendants with various substituents at both the carboxyl and amine terminals were designed. To further examine the steric effects of the proline pendants, aromatic counterparts were also prepared. In the latter case, the effects of hydrogen bonds between pendant units on the enhancement and stabilities of the helical conformation were investigated by switching from the ester to an amide linkage. The Cotton effects and signal intensities of both aliphatic and aromatic polyisocyanides from circular dichroism spectroscopy were compared based on the bulkiness of the pendant groups, solvent polarities, and solution temperatures. It was found that highly stable helical conformations of polyisocyanides could be imposed by small bulky monoproline pendants.


Assuntos
Cianetos/química , Polímeros/síntese química , Prolina/química , Dicroísmo Circular , Ligação de Hidrogênio , Polímeros/química , Solventes/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA