Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eadn7582, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657056

RESUMO

With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.

2.
Nat Commun ; 13(1): 6154, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257953

RESUMO

Long and flexible arrays of nanowires find impactful applications in sensing, photonics, and energy harvesting. Conventional manufacturing relies largely on lithographic methods limited in wafer size, rigidity, and machine write time. Here, we report a scalable process to generate encapsulated flexible nanowire arrays with high aspect ratios and excellent tunable size and periodicity. Our strategy is to control nanowire self-assembly into 2D and 3D architectures via the filamentation of a textured thin film under anisotropic stretching. This is achieved by coupling soft lithography, glancing angle deposition, and thermal drawing to obtain well-ordered meters-long nanowires with diameters down to 50 nanometers. We demonstrate that the nanowire diameter and period of the array can be decoupled and manipulated independently. We propose a filamentation criterion and perform numerical simulations implementing destabilizing long-range Van der Waals interactions. Applied to high-index chalcogenide glasses, we show that this decoupling allows for tuning diffraction. Finally, harnessing Mie resonance, we demonstrate the possibility of manufacturing macroscopic meta-grating superstructures for nanophotonic applications.

3.
Chem Soc Rev ; 51(22): 9203-9242, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36285556

RESUMO

The rapid development of micromanipulation technologies has opened exciting new opportunities for the actuation, selection and assembly of a variety of non-biological and biological nano/micro-objects for applications ranging from microfabrication, cell analysis, tissue engineering, biochemical sensing, to nano/micro-machines. To date, a variety of precise, flexible and high-throughput manipulation techniques have been developed based on different physical fields. Among them, optoelectronic tweezers (OET) is a state-of-art technique that combines light stimuli with electric field together by leveraging the photoconductive effect of semiconductor materials. Herein, the behavior of micro-objects can be directly controlled by inducing the change of electric fields on demand in an optical manner. Relying on this light-induced electrokinetic effect, OET offers tremendous advantages in micromanipulation such as programmability, flexibility, versatility, high-throughput and ease of integration with other characterization systems, thus showing impressive performance compared to those of many other manipulation techniques. A lot of research on OET have been reported in recent years and the technology has developed rapidly in various fields of science and engineering. This work provides a comprehensive review of the OET technology, including its working mechanisms, experimental setups, applications in non-biological and biological scenarios, technology commercialization and future perspectives.


Assuntos
Micromanipulação , Semicondutores , Micromanipulação/métodos , Eletricidade , Pinças Ópticas
4.
Front Pharmacol ; 13: 950535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160420

RESUMO

Jiangtang Sanhao formula (JTSHF), one of the prescriptions for treating the patients with diabetes mellitus (DM) in traditional Chinese medicine clinic, has been demonstrated to effectively ameliorate the clinical symptoms of diabetic patients with overweight or hyperlipidemia. The preliminary studies demonstrated that JTSHF may enhance insulin sensitivity and improve glycolipid metabolism in obese mice. However, the action mechanism of JTSHF on skeletal muscles in diabetic mice remains unclear. To this end, high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice were subjected to JTSHF intervention. The results revealed that JTSHF granules could reduce food and water intake, decrease body fat mass, and improve glucose tolerance, lipid metabolism, and insulin sensitivity in the skeletal muscles of diabetic mice. These effects may be linked to the stimulation of GLUT4 expression and translocation via regulating AMPKα/SIRT1/PGC-1α signaling pathway. The results may offer a novel explanation of JTSHF to prevent against diabetes and IR-related metabolic diseases.

5.
Small ; 18(18): e2108037, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257493

RESUMO

The electrochemical system is playing an increasingly important role in the advanced technology development for drinkable water and energy storage. While the binary electrolyte has been widely studied, such as the associated intriguing interfacial instabilities, multi-component electrolyte is by far less known. Here, based on the classic Cu|CuSO4 |Cu electrochemical system, the effect of supporting electrolyte is systematically investigated by highlighting the inert cations. In an annulus microfluidic device, the suppression of a previously known electro-osmotic instability and the emergence of an array of the remote electroconvection along the azimuthal direction is found. A distinctive inert-cation concentration valley propagates radially outward at a speed limited by the electromigration velocity. Remarkably, the simultaneous visualization of spatiotemporal evolution demonstrates the correlation of the concentration valley and electroconvection at a microscopic level. The underlying physical mechanism of their correlation is discussed, and the scaling analysis agrees with experiments. This work might inspire more future work on the multi-component electrolyte, such as for the suppression of interfacial hydrodynamic instability and mitigation of dendrite growth, with the technological implications for water treatment and energy storage in batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA