RESUMO
Inflammation, a sophisticated and delicately balanced physiological mechanism, is paramount to the host's immunological defense against pathogens. However, unfettered and excessive inflammation can be instrumental in engendering a plethora of chronic ailments and detrimental health repercussions, notably within the gastrointestinal tract. Lipopolysaccharides (LPS) from bacteria are potent endotoxins capable of instigating intestinal inflammation through the disruption of the intestinal epithelial barrier and the stimulation of a pro-inflammatory immune response. In this study, we sought to investigate the influence of Litsea cubeba essential oil (LCEO) on LPS-induced intestinal inflammation and associated changes in the gut microbiota. We investigated the therapeutic potential of LCEO for gut health, with particular emphasis on its gut protective properties, anti-inflammatory properties and modulation of the gut microbiome. LCEO exhibited protective effects on colonic tissue by protecting crypts and maintaining epithelial integrity, and anti-inflammatory properties by reducing TNF-α, IL-6, and IL-1ß levels in the liver and intestine. Citral, a major component of LCEO, showed robust binding to IL-1ß, IL-6, and TNF-α, exerting anti-inflammatory effects through hydrogen bonding interactions. Using community barplot and LEfSe analyses, we detected significant variation in microbial composition, identified discrete biomarkers, and highlighted the influence of essential oils on gut microbial communities. Our research suggests that LCEO may be a promising natural compound for ameliorating diarrhea and intestinal inflammation, with potential implications for modulating the gut microbiome. These observations provide invaluable insight into the potential therapeutic role of LCEO as a natural anti-inflammatory agent for treating intestinal inflammatory disorders, particularly in the setting of a dysregulated immune response and altered gut microbiota. Furthermore, our findings highlight the need to understand the complex interplay between the host, the gut microbiome and natural products in the context of inflammatory diseases.
RESUMO
BACKGROUND: Astroglioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for astroglioma. In the present study, the extract (L3) from Ganoderma Lucidum (G. lucidum) was found to inhibit the growth of astroglioma U87 cells and change the expression of circular RNAs (circRNAs). One of these, including the circular NF1-419 (circNF1-419), was of interest because NF1 gene is a classic tumor suppressor gene. OBJECTIVES: The functional role of circ-NF1-419 in the inhibition of astroglioma cells remains unknown. This study focuses on the role of circNF1-419 in functional abnormalities of U87 astroglioma cells and aims to elaborate on its regulatory mechanism. METHODS: The circNF1-419 overexpressing U87 (U87-NF1-419) cells were constructed. We generated U87-NF1-419 to evaluate the role of circNF1-419 on cell cycle, apoptosis, proliferation, tumor growth and metabolic regulation. Finally, we used docking screening to identify compounds in G. lucidum extracts that target circ-419. RESULTS: U87-NF1-419 can promote cell apoptosis and regulate lipid metabolism through glycerophospholipid metabolism and retrograde endocannabinoid signaling. Further examinations revealed that the expression of metabolic regulators, such as L-type voltage-operated calcium channels (L-VOCC), phospholipase C-ß3 (PLCß3), Mucin1, cationic amino acid transporter 4 (CAT4), cationic amino acid transporter 1 (CAT1) and a kinase (PRKA) anchor protein 4 (AKAP4) was inhibited, while phosphatidylserine synthase 1 (PTDSS1) was enhanced in U87-NF1-419 cells. In vivo experiments showed that circNF1-419 inhibits tumor growth in BALB/C nude mice, and enhanced AKAP4 and PTDSS1 in tumor tissues. The virtual docking screening results supported that ganosporeric acid A, ganodermatriol, ganoderic acid B and α-D-Arabinofuranosyladenine in L3 could activate circNF1-419 in astroglioma treatment. CONCLUSION: This study indicated that circNF1-419 could be a therapeutic target for the clinical treatment of astroglioma. L3 from Ganoderma Lucidum (G. lucidum) could inhibit astroglioma growth by activating circNF1-419.
Assuntos
Astrocitoma , Reishi , Animais , Apoptose , Astrocitoma/genética , Astrocitoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Genes da Neurofibromatose 1 , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Circular/genética , Reishi/química , Reishi/genéticaRESUMO
Glioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for glioma. Melittin (MT) is the main component of bee venom, which was found to have therapeutic effects on a variety of tumors. In this study, we explored the relationship between key genes regulated by MT and the prognosis of glioma. In cultured glioma U87 and U251 cells, MT inhibited cell proliferation and induces cell apoptosis in a time- and concentration-dependent manner. RNA-seq revealed that MT upregulated 11 genes and downregulated 37 genes. These genes are mainly enriched in cell membrane signaling pathways, such as surface membrane, membrane-enclosed organelles, integral component of membrane, PPAR signaling pathway, and voltage-gated potassium channel. PPI network analysis and literature analysis of 48 genes were performed, and 8 key genes were identified, and these key genes were closely associated with clinical prognosis. Overexpression of PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, and C5AR2 genes or low expression of MARCH4 gene in glioma patients was associated with poor survival. qPCR confirmed that MT can regulate the expression of these genes in glioma U87 cells. This study indicated that MT significantly inhibited the growth and regulated the expression of PCDH18, C5AR2, VASN, DEPP1, MYBPH, KCNE4, PPL, and MARCH4 genes in glioma U87 cells in vitro. These genes are closely related to the prognosis of patients with glioma and can be used as independent prognostic factors in patients with glioma. MT is a potential drug for the treatment of glioma.
RESUMO
Bladder cancer (BC) ranks the fourth in incidence in cancers of men and is a common malignant tumor in women. 4-Methoxydalbergione (4MOD), which is purified from Dalbergia sissoo Roxb, has been shown to have anticancer capacity for osteosarcoma and astroglioma. The role of 4MOD in bladder cancer has not been investigated. This study aims to evaluate the anticancer effect of 4MOD in BC cells and its possible mechanisms. The two human bladder cancer cell lines J82 and UMUC3 were used to evaluate the proliferation inhibitory effect of 4MOD by CCK8 and clonogenic assays. The migratory and invasive ability of tumor cells was examined by scratch test and transwell assay. Apoptosis was detected by flow cytometry and TUNEL assays. The autophagy-related molecules including Beclin-1 and LC3 were examined by Western blotting analysis. Furthermore, the RT-PCR was used to detect the mRNA expression of LC3. 4MOD repressed cell proliferation, migration, invasion and induced cell apoptosis in a concentration-dependent manner. The IC50 values of J82 and UMUC3 were 8.17 and 14.50 µM respectively. The mRNA and protein expression ratio of light chain 3-II (LC3-II)/LC3-I and the protein expression of Beclin-1 were increased when the BC cells were treated with 4MOD. The treatment of 4MOD attenuated the phosphorylation of Akt and ERK in the BC cells. We revealed that the 4MOD inhibits BC cells growth by inducing autophagy and inhibiting Akt/ERK signaling pathway. Our study provides new insights into the mechanism by which 4MOD weakens the proliferation of BC cells. This study demonstrates that 4MOD provided a lead compound for the development of novel compound with potent anticancer effect on BC cells.
RESUMO
OBJECTIVES: This study aimed at determining the synergistic effects of Yuanhu Zhitong tablets (YHZTP) on alcohol-induced conditioned place preference (CPP) in mice, in addition, the intervention mechanism was preliminarily explored based on traditional Chinese Medicine (TCM) network pharmacology on alcohol addiction. METHODS: Alcohol-induced CPP mice were used to evaluate the effects of either YHZTP or levo-tetrahydropalmatine (l-THP) plus imperatorin (IMP) administration on animal behavior. The network pharmacological strategy was used to establish the "compound-target" and "disease-drug-target" network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the shared targets between the compound and the disease. Twelve algorithms on CytoHubba were used to find the hub genes that were verified by qPCR. RESULTS: Systemic administration (2 g/kg, i.p.) of ethanol (EtOH) to mice was used to induce CPP. YHZTP On its own did not induce CPP or conditioned place aversion (CPA) at the doses of 0.3 g/kg or 0.6 g/kg (i.g.), but attenuated the acquisition and expression of EtOH-induce CPP in mice. In addition, YHZTP (0.3 or 0.6 g/kg) did not exhibit any effect on the motor activity of mice. Acquisition of alcohol-induced CPP was blocked by a combination of l-THP (5 mg/kg, i.g.) + IMP (2.5 mg/kg, i.g.) or l-THP (10 mg/kg, i.g.) + IMP (5 mg/kg, i.g.). However, the combination of l-THP (2.5 mg/kg, i.g.) + IMP (1.25 mg/kg, i.g.) or mono-administration of l-THP and IMP did not exhibit any effect on alcohol-induced CPP. YHZTP was also shown to reverse the up-regulation of Gabra1, Ptgs2, Mapk1, Mapk8, Mapk14, Nr3c, Prkca and Sirt1 genes and the down-regulation of Hhtr2a and Drd2 genes in the prefrontal cortex of EtOH induced CPP mice. These genes were associated with neuroactive ligand-receptor interactions, activation of the sphingolipid, calcium, cAMP, ErbB, NF-kappa B and MAPK signaling pathways. CONCLUSION: YHZTP inhibits EtOH-induced CPP behavior in mice while a combination of l-THP and IMP exerts a synergistic effect on the reduction of EtOH-induced CPP. Possible pharmacological mechanisms include inhibition of the expression of inflammatory factors and regulation of neurotransmitter receptor levels. Therefore, YHZTP is a novel candidate for the treatment of alcohol addiction.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Etanol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Alcaloides de Berberina/farmacologia , Sinergismo Farmacológico , Furocumarinas/farmacologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Biologia de Sistemas , ComprimidosRESUMO
Astroglioma is the most common primary tumor in the central nervous system without effective treatment strategies. Temozolomide (TMZ) is a chemotherapeutic drug to treat astroglioma but exhibits low potency and has side effects. Therefore, there is an urgent need to develop new compounds to treat astroglioma. Dalbergia sissoo Roxb was the source of Dalbergia odorifera in traditional Chinese medicine (TCM) and has been clinically used as an anti-tumor medicine. 4-Methoxydalbergione (4MOD) is purified from Dalbergia sissoo Roxb., and shows an inhibitory effect on osteosarcoma, but its effects on astroglioma have not been reported. Here, we evaluate its anti-astroglioma effects on both in vitro and in vivo models. In cultured astroglioma U87 cells, 4MOD inhibited cell proliferation and induced cell apoptosis in a time- and concentration-dependent manner. Compared with TMZ, 4MOD exhibited a tenfold greater potency of anti-astroglioma effects. 4MOD effectively stalled the cell cycle in G2 phase. Transcriptome sequencing (RNA-seq) showed that 4MOD upregulated 158 genes and downregulated 204 genes that are mainly enriched in cell membrane, cell division, cell cycle, p53, TNF, and MAPK signaling pathways, which may underlie its anti-tumor mechanisms. In a nude mouse xenograft model transplanted with U87 cells, 10 mg/kg 4MOD slowed down tumor growth rate, while at 30 mg/kg dose, it reduced tumor size. Collectively, this study demonstrates that 4MOD is a potent native compound that remarkably inhibits U87 astroglioma growth in both in vitro and in vivo models.