Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11333, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760403

RESUMO

The predictive power of B-type natriuretic peptide (BNP) and left ventricular ejection fraction (LVEF) is limited by its low specificity in patients with heart failure (HF). Discovery of more novel biomarkers for HF better diagnosis is necessary and urgent. ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (Apelin peptide jejunum, Apelin receptor), exhibits cardioprotective actions. However, the relationship between plasma ELABELA and cardiac function in HF patients is unclear. To evaluate plasma ELABELA level and its diagnostic value in HF patients, a total of 335 patients with or without HF were recruited for our monocentric observational study. Plasma ELABELA and Apelin levels were detected by immunoassay in all patients. Spearman correlation analysis was used to analyze the correlation between plasma ELABELA or Apelin levels and study variables. The receiver operating characteristic curves were used to access the predictive power of plasma ELABELA or Apelin levels. Plasma ELABELA levels were lower, while plasma Apelin levels were higher in HF patients than in non-HF patients. Plasma ELABELA levels were gradually decreased with increasing New York Heart Association grade or decreasing LVEF. Plasma ELABELA levels were negatively correlated with BNP, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness and positively correlated with LVEF in HF patients. In contrast, the correlation between plasma Apelin levels and these parameters is utterly opposite to ELABELA. The diagnostic value of ELABELA, Apelin, and LVEF for all HF patients was 0.835, 0.673, and 0.612; the sensitivity was 62.52, 66.20, and 32.97%; and the specificity was 95.92, 67.23, and 87.49%, respectively. All these parameters in HF patients with preserved ejection fraction were comparable to those in total HF patients. Overall, plasma ELABELA levels were significantly reduced and negatively correlated with cardiac function in HF patients. Decreased plasma ELABELA levels may function as a novel screening biomarker for HF. A combined assessment of BNP and ELABELA may be a good choice to increase the accuracy of the diagnosis of HF.


Assuntos
Apelina , Biomarcadores , Insuficiência Cardíaca , Hormônios Peptídicos , Humanos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Masculino , Feminino , Hormônios Peptídicos/sangue , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Apelina/sangue , Volume Sistólico , Curva ROC , Peptídeo Natriurético Encefálico/sangue , Função Ventricular Esquerda , Estudos de Coortes
2.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542876

RESUMO

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Assuntos
Lesão Pulmonar Aguda , Cebolinha-Francesa , Medicamentos de Ervas Chinesas , Saponinas , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Saponinas/farmacologia , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Células Endoteliais da Veia Umbilical Humana , Fator de Necrose Tumoral alfa/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Mediadores da Inflamação/metabolismo
3.
Endocrine ; 83(2): 285-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847370

RESUMO

PURPOSE: Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS: A narrative review. RESULTS: Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/ß-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS: Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.


Assuntos
Nefropatias Diabéticas , Hipertensão , Humanos , Aldosterona/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Nefropatias Diabéticas/metabolismo , Rim , Sistema Renina-Angiotensina/fisiologia , Hipertensão/metabolismo , Antagonistas de Receptores de Mineralocorticoides
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958538

RESUMO

Tiliroside, a natural flavonoid, has various biological activities and improves several inflammatory diseases in rodents. However, the effect of Tiliroside on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and the underlying mechanisms are still unclear. This study aimed to evaluate the potential renoprotective effect of Tiliroside on LPS-induced AKI in mice. Male C57BL/6 mice were intraperitoneally injected with LPS (a single dose, 3 mg/kg) with or without Tiliroside (50 or 200 mg/kg/day for 8 days). Tiliroside administration protected against LPS-induced AKI, as reflected by ameliorated renal dysfunction and histological alterations. LPS-stimulated renal expression of inflammatory cytokines, fibrosis markers, and kidney injury markers in mice was significantly abolished by Tiliroside. This flavonoid also stimulated autophagy flux but inhibited oxidative stress and tubular cell apoptosis in kidneys from LPS-injected mice. Mechanistically, our study showed the regulation of Tiliroside on the intrarenal renin-angiotensin system in LPS-induced AKI mice. Tiliroside treatment suppressed intrarenal AGT, Renin, ACE, and Ang II, but upregulated intrarenal ACE2 and Ang1-7, without affecting plasma Ang II and Ang1-7 levels. Collectively, our data highlight the renoprotective action of Tiliroside on LPS-induced AKI by suppressing inflammation, oxidative stress, and tubular cell apoptosis and activating autophagy flux via the shift towards the intrarenal ACE2/Ang1-7 axis and away from the intrarenal ACE/Ang II axis.


Assuntos
Injúria Renal Aguda , Sistema Renina-Angiotensina , Camundongos , Masculino , Animais , Lipopolissacarídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Flavonoides/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Angiotensina II/metabolismo
5.
Am J Physiol Renal Physiol ; 325(4): F503-F518, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589054

RESUMO

Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V2 receptor (V2R), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD72 mice, accompanied by downregulation of AQP2 and V2R expression in the renal cortex. 3-MA and CQ further increased AQP2 and V2R expression in the renal medulla of WD72 mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD72 mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD72 mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/V2R and ACE/ANG II signaling during WD.NEW & NOTEWORTHY Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/V2R and ACE/ANG II signaling in the renal cortex in WD mice.


Assuntos
Aquaporina 2 , Sistema Renina-Angiotensina , Animais , Camundongos , Aldosterona , Angiotensina II , Autofagia , Cloroquina , Rim , Renina
6.
Vascul Pharmacol ; 151: 107193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37433415

RESUMO

ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (apelin peptide jejunum, apelin receptor), has been known as an important regulator in cardiovascular homeostasis and may be a novel therapeutic target for multiple cardiovascular diseases (CVDs). At the physiological level, ELABELA exhibits angiogenic and vasorelaxant effects and is essential for heart development. At the pathological level, circulating ELABELA levels may be a novel diagnostic biomarker for various CVDs. ELABELA peripherally displays antihypertensive, vascular-protective, and cardioprotective effects, whereas central administration of ELABELA elevated BP and caused cardiovascular remodeling. This review highlights the physiological and pathological roles of ELABELA in the cardiovascular system. Enhancement of the peripheral ELABELA may be a promising pharmacological therapeutic strategy for CVDs.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Hormônios Peptídicos , Humanos , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/uso terapêutico , Coração , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Receptores de Apelina , Biomarcadores
7.
Acta Physiol (Oxf) ; 237(1): e13899, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264268

RESUMO

AIM: The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS: Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS: In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (ß-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION: Taken together, these results support a kaliuretic action of CD renin during HK intake.


Assuntos
Renina , Desequilíbrio Hidroeletrolítico , Camundongos , Animais , Renina/metabolismo , Aldosterona/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Potássio/metabolismo , Homeostase , Canais Epiteliais de Sódio/metabolismo , Camundongos Knockout
8.
J Cancer Res Clin Oncol ; 149(6): 2595-2605, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36153775

RESUMO

Cancer is a major public health problem, currently affecting hundreds of millions of people worldwide, and its clinical results are unpredictable, partly due to the lack of reliable biomarkers of cancer progression. Recently, it has been reported that (pro)renin receptor (PRR), as a new biomarker, plays an important role in different types of cancer, such as colorectal cancer, breast cancer, glioma, aldosterone-producing adenoma, endometrial cancer, urothelial cancer, and pancreatic ductal adenocarcinoma. In order to comprehensively and systematically understand the relationship and role of PRR with various cancers, this review will summarize the current research on targeting PRR in cancer from signaling to pathophysiological effects, including the correlation between PRR/sPRR expression level and different cancers, potential mechanisms regulated by PRR in the progress of cancers, and PRR in cancer treatment. PRR can be a novel and promising biomarker and potential therapeutic target for diagnosis, treatment, and prognosis in cancer, which is worthy of extensive development and application in clinics.


Assuntos
Glioma , Receptor de Pró-Renina , Humanos , Receptores de Superfície Celular , Sistema Renina-Angiotensina , Transdução de Sinais/fisiologia
9.
Hypertension ; 79(6): 1190-1202, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35296155

RESUMO

BACKGROUND: The collecting duct (CD) is a major site of both biosynthesis and action of prostaglandin E2 as highlighted by the predominant expression of COX-2 (cyclooxygenase-2) and some E-prostanoid (EP) subtypes at this nephron site. The purpose of this study was to determine the relevance and mechanism of CD COX-2/prostaglandin E2/EP1 signaling for the regulation of Na+ hemostasis during Na+ depletion. METHODS: Mice with Aqp2Cre-driven deletion of COX-2 (COX-2fl/flAqp2Cre+) or the EP1 subtype (EP1fl/flAqp2Cre+) were generated and the Na+-wasting phenotype of these mice during low-salt (LS) intake was examined. EP subtypes responsible for prostaglandin E2-induced local renin response were analyzed in primary cultured mouse inner medullary CD cells. RESULTS: Following 28-day LS intake, COX-2fl/flAqp2Cre+ mice exhibited a higher urinary Na+ excretion and lower cumulative Na+ balance, accompanied with suppressed intrarenal renin, AngII (angiotensin II), and aldosterone, expression of CYP11B2 (cytochrome P450 family 11 subfamily B member 2), and blunted expression of epithelial sodium channel subunits compared to floxed controls (COX-2fl/flAqp2Cre-), whereas no differences were observed for indices of systemic renin-angiotensin-aldosterone system. In cultured CD cells, exposure to prostaglandin E2 stimulated release of soluble (pro)renin receptor, prorenin/renin and aldosterone and the stimulation was more sensitive to antagonism of EP1 as compared other EP subtypes. Subsequently, EP1fl/flAqp2Cre+ mice largely recapitulated Na+-wasting phenotype seen in COX-2fl/flAqp2Cre+ mice. CONCLUSIONS: The study for the first time reports that CD COX-2/EP1 pathway might play a key role in maintenance of Na+ homeostasis in the face of Na+ depletion, at least in part, through activation of intrarenal renin-angiotensin-aldosterone-system and epithelial sodium channel.


Assuntos
Sistema Renina-Angiotensina , Renina , Aldosterona/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Camundongos , Prostaglandinas/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia
10.
Food Funct ; 13(4): 1702-1717, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35113090

RESUMO

During the past several decades, there has been a dramatic increase in fructose consumption worldwide in parallel with epidemics of metabolic diseases. Accumulating evidence has suggested that excessive fructose consumption is extensively linked to an increase in blood pressure. A combined intake of high fructose and high salt induced salt-sensitive hypertension and maternal high-fructose consumption induced programmed hypertension in adult offspring. The underlying mechanisms of these two events are similar and complex. These mainly include activation of the intrarenal renin-angiotensin system, gut dysbiosis, enhanced oxidative stress, activation of nephron ion transporters, and dysregulation of T-lymphocytes. The major objective of this article is to review recent advances in these fields and suggest novel therapies targeting these mechanisms that have potentially beneficial effects on diet-associated hypertension.


Assuntos
Dieta/efeitos adversos , Frutose/efeitos adversos , Hipertensão , Animais , Disbiose , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Inflamação , Masculino , Camundongos , Ratos
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 1-11, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130610

RESUMO

Since the first reported case in December of 2019, the coronavirus disease 2019 (COVID-19) has became an international public health emergency. So far, there are more than 228,206,384 confirmed cases including 4,687,066 deaths. Kidney with high expression of angiotensin-converting enzyme 2 (ACE2) is one of the extrapulmonary target organs affected in patients with COVID-19. Acute kidney injury (AKI) is one of the independent risk factors for the death of COVID-19 patients. The imbalance between ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R axis in the kidney may contribute to COVID-19-associated AKI. Although series of research have shown the inconsistent effects of multiple common RAS inhibitors on ACE2 expression and enzyme activity, most of the retrospective cohort studies indicated the safety and protective effects of ACEI/ARB in COVID-19 patients. This review article highlights the current knowledge on the possible involvement of intrarenal RAS in COVID-19-associated AKI with a primary focus on the opposing effects of ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R signaling in the kidney. Human recombinant soluble ACE2 or ACE2 variants with preserved ACE2-enzymatic activity may be the best options to improve COVID-19-associated AKI.


Assuntos
Injúria Renal Aguda/etiologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , Rim/fisiologia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/patogenicidade , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , COVID-19/patologia , COVID-19/virologia , Humanos , Rim/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
12.
FASEB J ; 36(4): e22237, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35226776

RESUMO

Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/ß-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.


Assuntos
Doenças Cardiovasculares/etiologia , Receptores de Superfície Celular/fisiologia , Animais , Cardiomegalia/etiologia , Cardiomiopatias/etiologia , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais/fisiologia , Humanos , Hipertensão/etiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Traumatismo por Reperfusão Miocárdica/etiologia , Neovascularização Fisiológica , Receptores de Superfície Celular/antagonistas & inibidores , Sistema Renina-Angiotensina/fisiologia , Receptor de Pró-Renina
14.
J Pharmacol Exp Ther ; 378(3): 251-261, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158404

RESUMO

The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.


Assuntos
Sistema Renina-Angiotensina , Transporte Biológico , Endopeptidases , Homeostase
15.
Front Physiol ; 12: 642274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868005

RESUMO

Emerging evidence is showing that apelin plays an important role in regulating salt and water balance by counteracting the antidiuretic action of vasopressin (AVP). However, the underlying mechanism remains unknown. Here, we hypothesized that (pro) renin receptor (PRR)/soluble prorenin receptor (sPRR) might mediate the diuretic action of apelin in the distal nephron. During water deprivation (WD), the urine concentrating capability was impaired by an apelin peptide, apelin-13, accompanied by the suppression of the protein expression of aquaporin 2 (AQP2), NKCC2, PRR/sPRR, renin and nuclear ß-catenin levels in the kidney. The upregulated expression of AQP2 or PRR/sPRR both induced by AVP and 8-Br-cAMP was blocked by apelin-13, PKA inhibitor (H89), or ß-catenin inhibitor (ICG001). Interestingly, the blockage of apelin-13 on AVP-induced AQP2 protein expression was reversed by exogenous sPRR. Together, the present study has defined the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/sPRR pathway in the CD as the molecular target of the diuretic action of apelin.

16.
J Hypertens ; 39(1): 12-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32740407

RESUMO

: Although considerable success has been shown for antihypertensive medications, the resistant hypertension and hypertension-related organ damages are still the important clinical issues and pose as high health and economic pressure. Therefore, novel therapeutic techniques and antihypertensive drugs are needed to advance more effective therapy of hypertension and hypertension-related disease to ameliorate mortality and healthcare costs worldwide. In this review, we highlight the latest progress in supporting the therapeutic potential of Elabela (ELA), a recently discovered early endogenous ligand for G-protein-coupled receptor apelin peptide jejunum, apelin receptor. Systemic administration of ELA exerts vasodilatory, antihypertensive, cardioprotective, and renoprotective effects, whereas central application of ELA increases blood pressure and causes cardiovascular remodeling primarily secondary to the hypertension. In addition, ELA drives extravillous trophoblast differentiation and prevents the pathogenesis of preeclampsia (a gestational hypertensive syndrome) by promoting placental angiogenesis. These findings strongly suggest peripheral ELA's therapeutic potential in preventing and treating hypertension and hypertension-related diseases including cardiovascular disease, kidney disease, and preeclampsia. Since therapeutic use of ELA is mainly limited by its short half-life and parenteral administration, it may be a clinical application candidate for the therapy of hypertension and its complications when fused with a large inert chemicals (e.g. polyethylene glycol, termed polyethylene glycol-ELA-21) or other proteins (e.g. the Fc fragment of IgG and albumin, termed Fc-ELA-21 or albumin-ELA-21), and new delivery methods are encouraged to develop to improve the efficacy of ELA fragments on apelin peptide jejunum or alternative unknown receptors.


Assuntos
Doenças Cardiovasculares , Hipertensão , Nefropatias , Pré-Eclâmpsia , Feminino , Humanos , Hipertensão/tratamento farmacológico , Placenta , Gravidez
17.
FASEB J ; 34(11): 14136-14149, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975331

RESUMO

The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/ß-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/ß-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.


Assuntos
Hipertensão/fisiopatologia , Nefropatias/fisiopatologia , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , Renina/metabolismo , Animais , Humanos , Transdução de Sinais , Receptor de Pró-Renina
18.
Am J Physiol Renal Physiol ; 319(5): F930-F940, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865014

RESUMO

Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human chronic kidney disease due to primary focal segmental glomerulosclerosis. The goal of the present study was to use this model to investigate antiproteinuric actions of the (pro)renin receptor decoy inhibitor PRO20. BALB/c mice were pretreated for 1 day with PRO20 at 500 µg·kg-1·day-1 via an osmotic minipump followed by a single injection of vehicle or ADR (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at the fourth week post-ADR administration. ADR-treated mice exhibited severe proteinuria, hypoalbuminemia and hyperlipidemia, glomerulosclerosis, podocyte loss, tubulointerstitial fibrosis, and oxidative stress, accompanied by elevated urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, all of which were significantly attenuated by PRO20. Urinary and renal renin activity and angiotensin II were elevated by ADR and suppressed by PRO20. In parallel, urinary and renal H2O2 levels and renal NADPH oxidase 4 (Nox4) and transient receptor potential channel C6 (TRPC6) expression in response to ADR were all similarly suppressed. Taken together, the results of the present study provide the first evidence that PRO20 can protect against podocyte damage and interstitial fibrosis in ADR nephropathy by preventing activation of the intrarenal renin-angiotensin system and upregulation of Nox4 and TRPC6 expression. PRO20 may have a potential application in the treatment of ADR nephropathy.


Assuntos
Nefropatias/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Renina/metabolismo , Angiotensina II/toxicidade , Animais , Anti-Hipertensivos/farmacologia , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/metabolismo , Peróxido de Hidrogênio/metabolismo , Nefropatias/metabolismo , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Substâncias Protetoras/farmacologia , Renina/efeitos dos fármacos , Renina/farmacologia
19.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271168

RESUMO

The therapies available for management of obesity and associated conditions are limited, because they are often directed toward an individual component of metabolic syndrome and are associated with adverse effects. Here, we report the multifaceted therapeutic potential of histidine-tagged recombinant soluble (pro)renin receptor (sPRR), termed sPRR-His, in a mouse model of diet-induced obesity (DIO). In the DIO model, 2-week administration of sPRR-His lowered body weight and remarkably improved multiple metabolic parameters in the absence of fluid retention. Conversely, inhibition of endogenous sPRR production by PF429242 induced diabetes and insulin resistance, both of which were reversed by the sPRR-His supplement. At the cellular level, sPRR-His enhanced insulin-induced increases in glucose uptake via upregulation of phosphorylated AKT and protein abundance of glucose transporter 4. Promoter and gene expression analysis revealed PRR as a direct target gene of PPARγ. Adipocyte-specific PPARγ deletion induced severe diabetes and insulin resistance associated with reduced adipose PRR expression and circulating sPRR. The sPRR-His supplement in the null mice nearly normalized blood glucose and insulin levels. Additionally, sPRR-His treatment suppressed DIO-induced renal sodium-glucose cotransporter-2 (SGLT2) expression. Overall, sPRR-His exhibits a therapeutic potential in management of metabolic syndrome via interaction with PPARγ.


Assuntos
Adipócitos/metabolismo , Gorduras na Dieta/efeitos adversos , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , PPAR gama/metabolismo , Receptores de Superfície Celular/metabolismo , Adipócitos/patologia , Animais , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Masculino , Síndrome Metabólica/induzido quimicamente , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , PPAR gama/genética , Receptores de Superfície Celular/genética , Receptor de Pró-Renina
20.
Am J Physiol Renal Physiol ; 318(5): F1122-F1135, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174138

RESUMO

Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-ß1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Hormônios Peptídicos/metabolismo , Sistema Renina-Angiotensina , Animais , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Masculino , Camundongos Knockout , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Ratos Endogâmicos Dahl , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA