Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793214

RESUMO

In laser beam processing, the angle or offset between the auxiliary gas and the laser beam axis have been proved to be two new process optimization parameters for improving cutting speed and quality. However, a traditional electromechanical actuator cannot achieve high-speed and high-precision motion control with a compact structure. This paper proposes a magnetic levitation actuator which could realize the 5-DOF motion control of a lens using six groups of differential electromagnets. At first, the nonlinear characteristic of a magnetic driving force was analyzed by establishing an analytical model and finite element calculation. Then, the dynamic model of the magnetic levitation actuator was established using the Taylor series. And the mathematical relationship between the detected distance and five-degree-of-freedom was determined. Next, the centralized control system based on PID control was designed. Finally, a driving test was carried out to verify the five-degrees-of-freedom motion of the proposed electromagnetic levitation actuator. The results show it can achieve a stable levitation and precision positioning with a desired command motion. It also proves that the proposed magnetic levitation actuator has the potential application in an off-axis laser cutting machine tool.

2.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560162

RESUMO

Under extreme working conditions such as high-speed driving on roads with a large road surface unevenness coefficient, turning on a road with a low road surface adhesion coefficient, and emergency acceleration and braking, a vehicle's stability deteriorates sharply and reduces ride comfort. There is extensive existing research on vehicle active suspension control, trajectory tracking, and control methods. However, most of these studies focus on conventional operating conditions, while vehicle stability analysis under extreme operating conditions is much less studied. In order to improve the stability of the whole vehicle under extreme operating conditions, this paper investigates the stability of a vehicle under extreme operating conditions based on linear quadratic regulator (LQR) control. First, a seven degrees of freedom (7-DOF) dynamics model of the whole vehicle is established based on the use of electromagnetic active suspension, and then an LQR controller of the electromagnetic active suspension is designed. A joint simulation platform incorporating MATLAB and CarSim was built, and the CarSim model is verified by real vehicle tests. Finally, the stability of the vehicle under four different ultimate operating conditions was analyzed. The simulation results show that the root mean square (RMS) values of body droop acceleration and pitch angle acceleration are improved by 57.48% and 28.81%, respectively, under high-speed driving conditions on Class C roads. Under the double-shift condition with a low adhesion coefficient, the RMS values of body droop acceleration, pitch acceleration, and roll angle acceleration are improved by 58.25%, 55.41%, and 31.39%, respectively. These results indicate that electromagnetic active suspension can significantly improve vehicle stability and reduce driving risk under extreme working conditions when combined with an LQR controller.

3.
Micromachines (Basel) ; 13(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744550

RESUMO

With the rapid development of Internet of Things (IoT) and the popularity of wireless sensors, using internal permanent or rechargeable batteries as a power source will face a higher maintenance workload. Therefore, self-powered wireless sensors through environmental energy harvesting are becoming an important development trend. Among the many studies of energy harvesting, the research on rotational energy harvesting still has many shortcomings, such as rarely working effectively under low-frequency rotational motion or working in a narrow frequency band. In this article, a rotational magnetic couple piezoelectric energy harvester is proposed. Under the low-frequency excitation (<10 Hz) condition, the harvester can convert low-frequency rotational into high-frequency vibrational of the piezoelectric beam by frequency up-conversion, effectively increasing the working bandwidth (0.5−16 Hz) and improving the efficiency of low-speed rotational energy harvesting. In addition, when the excitation frequency is too high (>16 Hz), it can solve the condition that the piezoelectric beam cannot respond in time by frequency down-conversion. Therefore, the energy harvester still has a certain degree of energy harvesting ability (18−22 Hz and 29−31 Hz) under high-frequency conditions. Meanwhile, corresponding theoretical analyses and experimental verifications were carried out to investigate the dynamic characteristics of the harvester with different excitation and installation directions. The experimental results illustrate that the proposed energy harvester has a wider working bandwidth benefiting from the frequency up-conversion mechanism and frequency down-conversion mechanism. In addition, the forward beam will have a wider bandwidth than the inverse beam due to the softening effect. In addition, the maximum powers of the forward and inverse beams at 310 rpm (15.5 Hz) are 93.8 µW and 58.5 µW, respectively. The maximum powers of the two beams at 420 rpm (21 Hz) reached 177 µW and 85.2 µW, respectively. The self-powered requirement of micromechanical systems can be achieved. Furthermore, this study provides the theoretical and experimental basis for rotational energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA