Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Data ; 11(1): 438, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698068

RESUMO

The Bethylidae are the most diverse of Hymenoptera chrysidoid families. As external parasitoids, the bethylids have been widely adopted as biocontrol agents to control insect pests worldwide. Thus far, the genomic information of the family Bethylidae has not been reported yet. In this study, we crystallized into a high-quality chromosome-level genome of ant-like bethylid wasps Sclerodermus sp. 'alternatusi' (Hymenoptera: Bethylidae) using PacBio sequencing as well as Hi-C technology. The assembled S. alternatusi genome was 162.30 Mb in size with a contig N50 size of 3.83 Mb and scaffold N50 size of 11.10 Mb. Totally, 92.85% assembled sequences anchored to 15 pseudo-chromosomes. A total of 10,204 protein-coding genes were annotated, and 23.01 Mb repetitive sequences occupying 14.17% of genome were pinpointed. The BUSCO results showed that 97.9% of the complete core Insecta genes were identified in the genome, while 97.1% in the gene sets. The high-quality genome of S. alternatusi will not only provide valuable genomic information, but also show insights into parasitoid wasp evolution and bio-control application in future studies.


Assuntos
Genoma de Inseto , Vespas , Animais , Vespas/genética , Cromossomos de Insetos/genética
2.
Pest Manag Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629775

RESUMO

BACKGROUND: Saliva has a crucial role in determining the compatibility between piercing-sucking insects and their hosts. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice in East and Southeast Asia, secretes gelling and watery saliva when feeding on rice sap. Nlsalivap-5 (NlSP5) and Nlsalivap-7 (NlSP7) were identified as potential planthopper-specific gelling saliva components, but their biological functions remain unknown. RESULTS: Here, we showed by transcriptomic analyses that NlSP5 and NlSP7 were biasedly expressed in the salivary glands of BPHs. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system, we constructed NlSP5 and NlSP7 homozygous mutants (NlSP5-/- and NlSP7-/-). Electrical penetration graph assay showed that NlSP5-/- and NlSP7-/- mutants exhibited abnormal probing and feeding behaviors. Bioassays revealed that the loss-of-function of NlSP5 and NlSP7 significantly reduced the fitness of BPHs, with extended developmental duration, shortened lifespan, reduced weight, and impaired fecundity and hatching rates. CONCLUSION: These findings deepen our understanding of the BPH-host interaction and may provide potential targets for the management of rice planthoppers. © 2024 Society of Chemical Industry.

3.
iScience ; 26(7): 107182, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456837

RESUMO

Wing polyphenism is found in a variety of insects and offers an attractive model system for studying the evolutionary significance of dispersal. The Forkhead box O (FoxO) transcription factor (TF) acts as a wing-morph switch that directs wing buds developing into long-winged (LW) or short-winged morphs in wing-dimorphic planthoppers, yet the regulatory mechanism of the FoxO module remains elusive. Here, we identified the zinc finger TF rotund as a potential wing-morph regulator via transcriptomic analysis and phenotypic screening in the brown plathopper, Nilaparvata lugens. RNA interference-mediated knockdown of rotund antagonized the LW development derived from in the context of FoxO depletion or the activation of the insulin/insulin-like growth factor signaling cascade, reversing long wings into intermediate wings. In vitro binding assays indicated that rotund physically binds to FoxO to form the FoxO combinatorial code. These findings broaden our understanding of the complexity of transcriptional regulation governing wing polyphenism in insects.

4.
Insect Sci ; 30(5): 1352-1362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36528849

RESUMO

The forkhead box O (FoxO) protein is the main transcriptional effector downstream of the insulin/insulin-like signaling pathway and regulates many developmental and physiological processes. Holometabolous insects with loss-of-function mutations in FoxO exhibit phenotypes distinct from those of hemimetabolous insects in which RNA interference was used. Despite the functional importance of FoxO, whether hemimetabolous insects share an evolutionally conserved function of FoxO with holometabolous insects remains to be clarified. We used the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) genome editing-system to establish a homozygous FoxO-null mutant (NlFoxO4E ) of the wing-dimorphic brown planthopper (BPH) Nilaparvata lugens, an economically important insect pest of rice fields. The phenotypes of NlFoxO4E mutants included extended nymphal duration, shortened lifespan, reduced reproduction, and decreased stress resistance. In addition, depletion of NlFoxO promoted cell proliferation in wing buds and led to 100% long-winged morphs, in stark contrast to short-winged wild-type BPHs. These findings indicate that NlFoxO is highly functionally conserved with its counterpart in holometabolous insects, and is required for optimal fitness of N. lugens. The insights from FoxO studies may facilitate the identification of potential target genes for BPH control applications.

5.
Pest Manag Sci ; 79(3): 1030-1039, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36354196

RESUMO

BACKGROUND: The migratory brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), is the most destructive pest affecting rice plants in Asia and feeds exclusively on rice. Studies have investigated the olfactory response of BPHs to the major rice volatile compounds in rice. The insect olfactory co-receptor (Orco) is a crucial component of the olfactory system and is essential for odorant detection. Functional analysis of the Orco gene in BPHs would aid in the identification of their host preference. RESULTS: We identified the BPH Orco homologue (NlOrco) by Blast searching the BPH transcriptome with the Drosophila Orco gene sequence. Spatiotemporal analysis indicated that NlOrco is first expressed in the later egg stage, and is expressed mainly in the antennae in adult females. A NlOrco-knockout line (NlOrco-/- ) was generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated mutagenesis. The NlOrco-/- mutants showed no response to rice volatile compounds and consequently no host-plant preference. In addition, NlOrco-/- mutants exhibited extended nymphal duration and impaired fecundity compared with wild-type BPHs. CONCLUSION: Our findings indicated that BPHs exhibit strong olfactory responses to major rice volatile compounds and suggest that NlOrco is required for the maximal fitness of BPHs. Our results may facilitate the identification of potential target genes or chemical compounds for BPH control applications. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Receptores Odorantes , Animais , Feminino , Fertilidade/genética , Hemípteros/genética , Mutagênese , Oryza/genética , Oryza/química , Receptores Odorantes/genética
6.
Am J Transl Res ; 14(11): 8390-8397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505336

RESUMO

OBJECTIVE: To validate a response surface model for the inhibition of somatic motor response at corrected body weight (CBW) doses of remifentanil plus propofol in elderly patients and to analyze the dose-effect relationship and optimal dosing range for total intravenous anesthesia (TIVA) induction in painless gastroscopy. METHODS: We designed a prospective, open-ended, randomized, parallel group study. A total of 300 elderly patients undergoing painless gastroscopy were randomized to receive remifentanil (0-0.5 µg/kg) and propofol (0.8-2.2 mg/kg) dosing based on CBW. Gastroscopy was performed at the drug's peak effect time. The somatic motor response to gastroscopic stimulation and the adverse reactions at different points were recorded. The somatic motor response was used as the basic element in the subsequent RSM analysis. Model parameters and 95% confidence intervals were fitted by MATLAB software. RESULTS: The CBW doses of remifentanil and propofol showed synergistic inhibitory effects on motor response to noxious stimulation and attenuated adverse reactions. The 50% effective doses of remifentanil and propofol for inhibiting the motor response were 1.754 µg/kg and 2.048 mg/kg, respectively. CONCLUSION: Remifentanil or propofol alone could not inhibit the somatic motor response at weight-adjusted doses among elderly patients. A combination of remifentanil and propofol showed a synergistic interaction in suppressing the motor response and adverse reactions in elderly patients. Preinjection of remifentanil could reduce the needed dose of propofol.

7.
Nat Commun ; 13(1): 5670, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167844

RESUMO

Insect wing polyphenism is characterized by its ability to produce two or more distinct wing morphs from a single genotype in response to changing environments. However, the molecular basis of this phenomenon remains poorly understood. Here, we identified a zinc finger homeodomain transcription factor Zfh1 that acts as an upstream regulator for the development of long-winged (LW) or shorted-winged (SW) morphs in planthoppers. Knockdown of Zfh1 directs SW-destined nymphs to develop into LW morphs by down-regulating the transcriptional level of FoxO, a prominent downstream effector of the insulin/IGF signaling (IIS) pathway. The balance between transcriptional regulation via the Zfh1-FoxO cascade and post-translational regulation via the IIS-FoxO cascade provides a flexible regulatory mechanism for the development of alternative wing morphs. These findings help us understand how phenotypic diversity is generated by altering the activity of conserved proteins, and provide an extended framework for the evolution of wing morphological diversity in insects.


Assuntos
Hemípteros , Asas de Animais , Animais , Regulação da Expressão Gênica , Hemípteros/genética , Insulina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo
8.
Insect Mol Biol ; 31(4): 447-456, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35278009

RESUMO

The homeotic complex gene Abdominal-B (Abd-B) is involved in regulating the development of posterior abdomens and has been extensively studied in holometabolous insects. However, the function of Abd-B in hemimetabolous insects is not fully understood. Here, we functionally characterize an Abd-B homologue in the brown planthopper (BPH), Nilaparvata lugens. The full-length cDNA of the N. lugens Abd-B homologue (NlAbd-B) is 2334 nt, with an open reading frame of 1113 bp. NlAbd-B has the highest expression level at the egg stage relative to the nymphal and adult stages and is mainly expressed in the fourth to the ninth abdominal segment of embryos. RNA interference (RNAi)-mediated knockdown of NlAbd-B in nymphs disrupted the development of genitalia both in females and males and caused a genitalia-to-leg transformation. Parental RNAi of NlAbd-B in both female and male adults caused an extra abdominal segment in offspring nymphs, while parental RNAi of the N. lugens abdominal-A homologue in both female and males adults led to embryos with leg-like appendages on the second to the eighth abdominal segment. These findings suggest that NlAbd-B plays a pivotal role in genital development and posterior abdominal patterning and thus highlight the conservational role of Abd-B in holometabolous and hemimetabolous insects.


Assuntos
Hemípteros , Abdome , Animais , Feminino , Hemípteros/fisiologia , Masculino , Ninfa/genética , Ninfa/metabolismo , Fases de Leitura Aberta , Interferência de RNA
9.
BMC Cancer ; 21(1): 906, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372798

RESUMO

BACKGROUND: A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to identify the optimal biomarkers for ESCC using machine learning algorithms. METHODS: Biomarkers related to clinical survival, recurrence or therapeutic response of patients with ESCC were determined through literature database searching. Forty-eight biomarkers linked to recurrence or prognosis of ESCC were used to construct a molecular interaction network based on NetBox and then to identify the functional modules. Publicably available mRNA transcriptome data of ESCC downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets included GSE53625 and TCGA-ESCC. Five machine learning algorithms, including logical regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF) and XGBoost, were used to develop classifiers for prognostic classification for feature selection. The area under ROC curve (AUC) was used to evaluate the performance of the prognostic classifiers. The importances of identified molecules were ranked by their occurrence frequencies in the prognostic classifiers. Kaplan-Meier survival analysis and log-rank test were performed to determine the statistical significance of overall survival. RESULTS: A total of 48 clinically proven molecules associated with ESCC progression were used to construct a molecular interaction network with 3 functional modules comprising 17 component molecules. The 131,071 prognostic classifiers using these 17 molecules were built for each machine learning algorithm. Using the occurrence frequencies in the prognostic classifiers with AUCs greater than the mean value of all 131,071 AUCs to rank importances of these 17 molecules, stratifin encoded by SFN was identified as the optimal prognostic biomarker for ESCC, whose performance was further validated in another 2 independent cohorts. CONCLUSION: The occurrence frequencies across various feature selection approaches reflect the degree of clinical importance and stratifin is an optimal prognostic biomarker for ESCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/etiologia , Aprendizado de Máquina , Algoritmos , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Reprodutibilidade dos Testes , Transcriptoma
10.
Anal Methods ; 13(29): 3274-3281, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34223572

RESUMO

Accurate detection of mercury ions (Hg2+) in water is of great importance for environmental protection. Here, a surface-enhanced Raman scattering (SERS) sensor using bovine-serum-albumin-modified gold-silicon nanowire arrays (Au@SiNWAs) is used to detect the ions. The SiNWAs were grown via chemical etching; the addition of modified gold particles on the surface formed Au@SiNWAs to increase the surface activity. The Raman enhancement factor was as large as ∼2.52 × 105, which was also confirmed with finite-difference time-domain simulations. The detection limit for Hg2+ ions in water was as low as ∼10-12 M, which is much lower than that stipulated by the United States Environmental Protection Agency's maximum residue requirements for drinking water. Furthermore, the SERS intensity was linear with the log of the Hg2+ concentration between 1 pM and 100 nM, with a correlation coefficient of 0.992. There was no significant interference when other metal ions were present, which shows the excellent selectivity of the SERS sensor. Unknown Hg2+ concentrations in water can be readily determined in an accurate and reliable manner, with a relative standard deviation of ∼9.21%.


Assuntos
Mercúrio , Nanopartículas Metálicas , Animais , Bovinos , Íons , Soroalbumina Bovina , Análise Espectral Raman , Água
11.
Arch Insect Biochem Physiol ; 108(1): e21833, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288091

RESUMO

The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.


Assuntos
Fertilidade/genética , Genes Homeobox , Hemípteros/genética , Animais , Perfilação da Expressão Gênica/métodos , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ninfa/genética , Controle de Pragas , Interferência de RNA , Reprodução/genética
12.
Insects ; 12(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064478

RESUMO

The brown planthopper (BPH), Nilaparvata lugens, can develop into either short-winged (SW) or long-winged (LW) adults according to environmental conditions, and has long served as a model organism for exploring the mechanisms of wing polyphenism in insects. The transcription factor NlFoxO acts as a master regulator that directs the development of either SW or LW morphs, but the underlying molecular mechanism is largely unknown. Here, we microinjected SW-destined morphs with double stranded-RNA (dsRNA) targeting NlFoxO (dsNlFoxO) to change them into LW-winged morphs. In parallel, SW-destined morphs microinjected with dsRNA targeting the gene encoding green fluorescence protein (dsGfp) served as a negative control. The forewing and hindwing buds of 5th-instar nymphs collected at 24, 36, and 48 h after eclosion (hAE) were used for RNA sequencing. We obtained a minimum of 43.4 million clean reads from forewing and hindwing buds at a single developmental time. Differentially expressed genes (DEGs) were significantly enriched in various Gene Ontology (GO) terms, including cellular process, binding, and cell part. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis showed that up-regulated genes in dsNlFoxO-treated forewing and hindwing buds were largely associated with the cell cycle and DNA replication. Furthermore, most up-regulated genes displayed higher expression at 24-, and 36-hAE relative to 48 hAE, indicating that wing cells in LW-destined wings might actively proliferate during the first 36 h in 5th-instar nymphs. Our findings indicated that LW development in BPH was likely dependent on the duration of cell proliferation in the 5th-instar stage, which sheds light on the molecular basis of wing polymorphism in insects.

13.
PLoS Genet ; 17(6): e1009653, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181658

RESUMO

A single insulin receptor (InR) gene has been identified and extensively studied in model species ranging from nematodes to mice. However, most insects possess additional copies of InR, yet the functional significance, if any, of alternate InRs is unknown. Here, we used the wing-dimorphic brown planthopper (BPH) as a model system to query the role of a second InR copy in insects. NlInR2 resembled the BPH InR homologue (NlInR1) in terms of nymph development and reproduction, but revealed distinct regulatory roles in fuel metabolism, lifespan, and starvation tolerance. Unlike a lethal phenotype derived from NlInR1 null, homozygous NlInR2 null mutants were viable and accelerated DNA replication and cell proliferation in wing cells, thus redirecting short-winged-destined BPHs to develop into long-winged morphs. Additionally, the proper expression of NlInR2 was needed to maintain symmetric vein patterning in wings. Our findings provide the first direct evidence for the regulatory complexity of the two InR paralogues in insects, implying the functionally independent evolution of multiple InRs in invertebrates.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Hemípteros/genética , Proteínas de Insetos/genética , Receptor de Insulina/genética , Asas de Animais/metabolismo , Adaptação Fisiológica/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Metabolismo Energético/genética , Dosagem de Genes , Edição de Genes/métodos , Hemípteros/anatomia & histologia , Hemípteros/crescimento & desenvolvimento , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Longevidade/genética , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Fenótipo , Receptor de Insulina/metabolismo , Transdução de Sinais , Inanição/genética , Inanição/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento
14.
J Physiol Biochem ; 77(4): 577-587, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146302

RESUMO

To investigate whether miR-124-3p influences cell apoptosis, inflammatory response, and oxidative stress in rats with acute myocardial infarction (AMI) by mediating the SIRT1/FGF21/CREB/PGC1α pathway. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-124-3p and SIRT1. AMI rats were established via coronary artery ligation after injection with agomiR-124-3p, antagomiR-124-3p, and/or SIRT1 siRNA, and triphenyltetrazolium chloride (TTC), HE, and TUNEL stainings were performed. Bio-Plex rat cytokine assays were performed to determine proinflammatory factor levels. qRT-PCR and Western blotting were used to examine the mRNA and protein expression, respectively. The activity levels of antioxidant enzymes in myocardial tissues were also measured. miR-124-3p was confirmed to target SIRT1 in the H9C2 cells. AMI rats exhibited increased miR-124-3p expression and decreased SIRT1 expression in myocardial tissues. HE staining showed a disorganized cell arrangement and inflammatory cell infiltration in the myocardial tissues of the AMI rats, which was more severe in the rats injected with SIRT1 and agomiR-124-3p but was ameliorated in those treated with antagomiR-124-3p. Moreover, the AMI rats in the antagomiR-124-3p group presented with a reduction in infarct area with an increase in antioxidant enzyme activity, Bcl-2 expression, and activation of the FGF21/CREB/PGC1α pathway, as well as a decrease in cell apoptosis rate, Bax and Caspase-3 expression, and levels of proinflammatory factors, effects that were reversed by si-SIRT1. Inhibiting miR-124-3p expression may activate the FGF21/CREB/PGC1α pathway to reduce cell apoptosis, alleviate the inflammatory response, and attenuate oxidative stress in AMI rats by targeting SIRT1. Graphical abstract.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Apoptose , Fatores de Crescimento de Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Piroptose , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
15.
PLoS Genet ; 17(2): e1009312, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561165

RESUMO

Wing polymorphism is an evolutionary feature found in a wide variety of insects, which offers a model system for studying the evolutionary significance of dispersal. In the wing-dimorphic planthopper Nilaparvata lugens, the insulin/insulin-like growth factor signaling (IIS) pathway acts as a 'master signal' that directs the development of either long-winged (LW) or short-winged (SW) morphs via regulation of the activity of Forkhead transcription factor subgroup O (NlFoxO). However, downstream effectors of the IIS-FoxO signaling cascade that mediate alternative wing morphs are unclear. Here we found that vestigial (Nlvg), a key wing-patterning gene, is selectively and temporally regulated by the IIS-FoxO signaling cascade during the wing-morph decision stage (fifth-instar stage). RNA interference (RNAi)-mediated silencing of Nlfoxo increase Nlvg expression in the fifth-instar stage (the last nymphal stage), thereby inducing LW development. Conversely, silencing of Nlvg can antagonize the effects of IIS activity on LW development, redirecting wing commitment from LW to the morph with intermediate wing size. In vitro and in vivo binding assays indicated that NlFoxO protein may suppress Nlvg expression by directly binding to the first intron region of the Nlvg locus. Our findings provide a first glimpse of the link connecting the IIS pathway to the wing-patterning network on the developmental plasticity of wings in insects, and help us understanding how phenotypic diversity is generated by the modification of a common set of pattern elements.


Assuntos
Proteína Forkhead Box O1/metabolismo , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Somatomedinas/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Ontologia Genética , Inativação Gênica , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Íntrons , Fenótipo , Ligação Proteica , Interferência de RNA , Somatomedinas/genética , Análise Espaço-Temporal , Asas de Animais/metabolismo
16.
Front Genet ; 11: 585320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240330

RESUMO

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to a CCAAT box in nearly all eukaryotes. However, the function of NF-Y in the life-history traits of insects is unclear. Here, we identified three NF-Y subunits, NlNF-YA, NlNF-YB, and NlNF-YC, in the wing-dimorphic brown planthopper (BPH), Nilaparvata lugens. Spatio-temporal analysis indicated that NlNF-YA, NlNF-YB, and NlNF-YC distributed extensively in various body parts of fourth-instar nymphs, and were highly expressed at the egg stage. RNA interference (RNAi)-mediated silencing showed that knockdown of NlNF-YA, NlNF-YB, or NlNF-YC in third-instar nymphs significantly extended the fifth-instar duration, and decreased nymph-adult molting rate. The addition of 20-hydroxyecdysone could specifically rescue the defect in adult molting caused by NlNF-YA RNAi, indicating that NlNF-Y might modulate the ecdysone signaling pathway in the BPH. In addition, NlNF-YA RNAi, NlNF-YB RNAi, or NlNF-YC RNAi led to small and moderately malformed forewings and hindwings, and impaired the normal assembly of indirect flight muscles. Adult BPHs treated with NlNF-YA RNAi, NlNF-YB RNAi, or NlNF-YC RNAi produced fewer eggs, and eggs laid by these BPHs had arrested embryogenesis. These findings deepen our understanding of NF-Y function in hemipteran insects.

17.
Exp Ther Med ; 20(4): 3709-3719, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32855722

RESUMO

Oxidative stress and apoptosis serve an important role in the development of pressure overload-induced cardiac remodelling. Carnosic acid (CA) has been found to exert antioxidant and anti-apoptotic effects. The present study investigated the underlying mechanism of CA protection and whether this effect was exerted against pressure overload-induced cardiac remodelling. Aortic banding (AB) surgery was performed to induce cardiac remodelling. Mice were randomly divided into four groups (n=15/group): i) Sham + vehicle; ii) sham + CA; iii) AB + vehicle; and iv) AB + CA. After 2 days of AB, 50 mg kg CA was administered orally for 12 days. Echocardiography, histological analysis and molecular biochemistry techniques were performed to evaluate the roles of CA. CA treatment decreased cardiac hypertrophy, fibrosis, oxidative stress and apoptosis in mice challenged with pressure overload. CA also decreased the cross-sectional area of cardiomyocytes and the mRNA and protein expression levels of hypertrophic markers. Furthermore, CA treatment decreased collagen deposition, α-smooth muscle actin expression and the mRNA and protein expression of various fibrotic markers. Additionally, CA reversed the AB-mediated increase in NAPDH oxidase (NOX) 2, NOX4 and 4-hydroxynonenal levels. The number of apoptotic cells was decreased following CA treatment following under conditions of pressure overload. CA also suppressed the activation of AKT and glycogen synthase kinase 3 ß (GSK3ß) in mice challenged with AB. The present results suggested that CA could inhibit pressure overload-induced cardiac hypertrophy and fibrosis by suppressing the AKT/GSK3ß/NOX4 signalling pathway. Therefore, CA may be a promising therapy for cardiac remodelling.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118532, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32610212

RESUMO

A facile method for synthesizing Au nanoparticle-coated Fe3O4 magnetic composite nanospheres (Fe3O4@Au MCS) via seed-mediated growth and iterative reduction is reported. The nanospheres were then successfully used to detect malachite green (MG) residues in water bodies via surface-enhanced Raman scattering (SERS) technique. Fe3O4@Au MCS has excellent optical properties and superparamagnetism; it can be dispersed into the solution to fully adsorb target molecules and then collected with a magnet to increase the molecular density and the number of SERS hot spots. Magnetic enrichment was superior to conventional detection method. The limit of detection for MG was 10-7 M and the enhancement factor was 1.1 × 105. The logarithm of the SERS intensity of the characteristic peak at 1618 cm-1 exhibited a linear relationship with the logarithm of the MG concentration over the range of 10-3- 10-7 M, with a correlation coefficient of 0.966. The Fe3O4@Au MCS had good uniformity of SERS signals, with a 18.59% relative standard deviation for the SERS intensity. MG detection in aquaculture water conformed with the established quantitative regulations. The SERS spectrum calculated with density function theory for MG adsorbed on Fe3O4@Au MCS was very close to the experimental spectrum, which verified enhancement by the substrate. Overall, Fe3O4@Au MCS enabled ultrasensitive, quantitative SERS detection of MG.

19.
Neural Plast ; 2020: 4297483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399022

RESUMO

At present, most of the drugs have little effect on the pathological process of rheumatoid arthritis (RA). Analgesia is an important measure in the treatment of RA and is also one of the criteria to determine the therapeutic effects of the disease. Some studies have found that crocin, a kind of Chinese medicine, can effectively alleviate pain sensitization in pain model rats, but the mechanism is not clear. Emerging evidence indicates that crocin may inhibit the metastasis of lung and liver cancer cells from the breast by inhibiting Wnt/ß-catenin and the Wnt signaling pathway is closely related to RA. Wnt5a belongs to the Wnt protein family and was previously thought to be involved only in nonclassical Wnt signaling pathways. Recent studies have shown that Wnt5a has both stimulatory and inhibitory effects on the classical Wnt signaling pathway, and so, Wnt5a has attracted increasing attention. This study demonstrated that crocin significantly increased the mechanical thresholds of adjuvant-induced arthritis (AIA) rats, suggesting that crocin can alleviate neuropathic pain. Crocin significantly decreased the levels of pain-related factors and glial activation. Foxy5, activator of Wnt5a, inhibited the above effects of crocin in AIA rats. In addition, intrathecal injection of a Wnt5a inhibitor significantly decreased hyperalgesia in AIA rats. This research shows that crocin may alleviate neuropathic pain in AIA rats by inhibiting the expression of pain-related molecules through the Wnt5a/ß-catenin pathway, elucidating the mechanism by which crocin relieves neuropathic pain and provides a new way of thinking for the treatment of AIA pain.


Assuntos
Artrite Reumatoide/metabolismo , Carotenoides/administração & dosagem , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuroglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hiperalgesia/prevenção & controle , Masculino , Neuralgia/prevenção & controle , Neuroglia/metabolismo , Ratos Sprague-Dawley , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo
20.
Gene ; 737: 144446, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035241

RESUMO

The homeotic complex (Hox) gene Ultrabithorax (Ubx) plays pivotal roles in modifying specific morphological differences among the second (T2), the third thoracic (T3), and the first abdomen (A1) segment in several insects. Whether Ubx regulates wing dimorphism and other morphological traits in the delphacid family (order Hemiptera) remains elusive. In this study, we cloned a full-length Ubx ortholog (NlUbx) from the wing-dimorphic planthopper Nilaparvata lugens, and identified two NlUbx isoforms. RNA-interference (RNAi)-mediated silencing of NlUbx in short-winged BPH nymphs significantly induced the development of wing-like appendages from T3 wingbuds, and this effect is likely mediated by the insulin/insulin-like signaling pathway. RNAi knockdown of NlUbx in long-winged BPH nymphs led to a transformation from hindwings to forewings. Additionally, silencing of NlUbx not only dramatically changed the T3 morphology, but also led to jumping defect of T3 legs. First-instar nymphs derived from parental RNAi had an additional leg-like appendages on A1. These results suggest that Ubx plays a role in determining some morphological traits in delphacid planthoppers, and thus help in understanding evolution of morphological characteristics in arthropods.


Assuntos
Hemípteros/genética , Proteínas de Insetos/genética , Asas de Animais/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Técnicas de Silenciamento de Genes , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/química , Masculino , Alinhamento de Sequência , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA