Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(21): e2312861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340067

RESUMO

Coherent phonon transfer via high-quality factor (Q) mechanical resonator strong coupling has garnered significant interest. Yet, the practical applications of these strongly coupled resonator devices are largely constrained by their vulnerability to fabrication defects. In this study, topological strong coupling of gigahertz frequency surface acoustic wave (SAW) resonators with lithium niobate is achieved. The nanoscale grooves are etched onto the lithium niobate surface to establish robust SAW topological interface states (TISs). By constructing phononic crystal (PnC) heterostructures, a strong coupling of two SAW TISs, achieving a maximum Rabi splitting of 22 MHz and frequency quality factor product fQm of ≈1.2 × 1013 Hz, is realized. This coupling can be tuned by adjusting geometric parameters and a distinct spectral anticrossing is experimentally observed. Furthermore, a dense wavelength division multiplexing device based on the coupling of multiple TISs is demonstrated. These findings open new avenues for the development of practical topological acoustic devices for on-chip sensing, filtering, phonon entanglement, and beyond.

2.
Phys Rev Lett ; 131(7): 073601, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656859

RESUMO

We investigate entangled x-ray photon pair emissions in a free-electron laser (FEL) and establish a quantum electrodynamical theory for coherently amplified entangled photon pair emission from microbunched electron pulses in the undulator. We provide a scheme to generate highly entangled x-ray photon pairs and numerically demonstrate the properties of entangled emission, which is of great importance in x-ray quantum optics. Our work shows a unique advantage of FELs in entangled x-ray photon pair generation.

3.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37094015

RESUMO

Utilizing the anti-Zeno effect, we demonstrate that the resonances of ultracold molecular interactions can be selectively controlled by modulating the energy levels of molecules with a dynamic magnetic field. We show numerically that the inelastic scattering cross section of the selected isotopic molecules in the mixed isotopic molecular gas can be boosted for 2-3 orders of magnitude by modulation of Zeeman splittings. The mechanism of the resonant anti-Zeno effect in the ultracold scattering is based on matching the spectral modulation function of the magnetic field with the Floquet-engineered resonance of the molecular collision. The resulting insight provides a recipe to implement resonant anti-Zeno effect in control of molecular interactions, such as the selection of reaction channels between molecules involving shape and Feshbach resonances, and external field-assisted separation of isotopes.

4.
J Phys Chem A ; 127(16): 3608-3613, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37053512

RESUMO

Conical intersections (CIs) are diabolical points in the potential energy surfaces generally caused by point-wise degeneracy of different electronic states, and give rise to the geometric phases (GPs) of molecular wave functions. Here we theoretically propose and demonstrate that the transient redistribution of ultrafast electronic coherence in attosecond Raman signal (TRUECARS) spectroscopy is capable of detecting the GP effect in excited state molecules by applying two probe pulses including an attosecond and a femtosecond X-ray pulse. The mechanism is based on a set of symmetry selection rules in the presence of nontrivial GPs. The model of this work can be realized for probing the geometric phase effect in the excited state dynamics of complex molecules with appropriate symmetries, using attosecond light sources such as free-electron X-ray lasers.

5.
Phys Rev Lett ; 129(1): 013402, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841560

RESUMO

We demonstrate that final states of ultracold molecules by scattering with atoms can be selectively produced using dynamic magnetic fields of multiple frequencies. We develop a multifrequency Floquet coupled channel method to study the channel selection by dynamic magnetic field control, which can be interpreted by a generalized quantum Zeno effect for the selected scattering channels. In particular, we use an atom-molecule spin-flip scattering to show that the transition to certain final states of the molecules in the inelastic scattering can be suppressed by engineered coupling between the Floquet states.

6.
Nat Commun ; 12(1): 5441, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521840

RESUMO

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which encodes the amplitude and phase of the wavepacket, for molecules of arbitrary degrees of freedom, will enable the reconstruction of a quantum molecular movie from experimental x-ray or electron diffraction data.

7.
Nat Phys ; 16(3): 357-364, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33790984

RESUMO

Electrical signaling in biology is typically associated with action potentials, transient spikes in membrane voltage that return to baseline. Hodgkin-Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction-diffusion equations which could, in principle, support spontaneous emergence of patterns of membrane voltage which are stable in time but structured in space. Here we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signaling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical symmetry breaking.

8.
Opt Express ; 22(3): 3098-104, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663600

RESUMO

Resistance thermometry provides a time-tested method for taking temperature measurements. However, fundamental limits to resistance-based approaches has produced considerable interest in developing photonic temperature sensors to leverage advances in frequency metrology and to achieve greater mechanical and environmental stability. Here we show that silicon-based optical ring resonator devices can resolve temperature differences of 1 mK using the traditional wavelength scanning methodology. An even lower noise floor of 80 µK for measuring temperature difference is achieved in the side-of-fringe, constant power mode measurement.


Assuntos
Fotometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Termografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Phys Rev Lett ; 104(16): 160502, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20482034

RESUMO

We study an efficient algorithm to hash any single-qubit gate into a braid of Fibonacci anyons represented by a product of icosahedral group elements. By representing the group elements by braid segments of different lengths, we introduce a series of pseudogroups. Joining these braid segments in a renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations of braids. With braids of length O(log2(1/epsilon)), we can approximate all SU(2) matrices to an average error epsilon with a cost of O(log(1/epsilon)) in time. The algorithm is applicable to generic quantum compiling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA