Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epigenomics ; 10(11): 1499-1509, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309258

RESUMO

Exosomes are small membrane vesicles with a diameter of 40-100 nm, which are released into the intracellular environment. Exosomes could influence the genetic and epigenetic changes of receptor cells by promoting the horizontal transfer of various proteins or RNAs, especially miRNAs. Moreover, exosomes also play an important role in tumor microenvironment. Exosomes could promote the short- and long-distance exchanges of genetic information by acting as mediators of cell-to-cell communication. In addition, exosomes participate in drug resistance of tumor cells by genetic exchange between cells. It is reported that exosomes could be absorbed by recipient cells and transmit chemoresistance from drug-resistant tumor cells to sensitive ones. Then understanding the mechanisms of chemotherapy failure and controlling tumor progression effectively will be a major challenge for us. Therefore, in this review, we will briefly reveal the role of exosomes in drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Neoplasias/metabolismo , Animais , Exossomos/genética , Humanos , MicroRNAs/genética , Neoplasias/genética
2.
Epigenomics ; 10(9): 1229-1242, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30182731

RESUMO

AIM: To study the role of hsa_circ_0072995 in regulating the invasion and migration of breast cancer cells. MATERIALS & METHODS: Hsa_circ_0072995 expression was confirmed by quantitative real-time PCR; evaluating the migration and invasion of breast cancer cells through transwell assay; predicating circRNA/microRNAs interaction using the miRanda and RNAhybrid software; identifying the relationship between hsa_circ_0072995 and miR-30c-2-3p by luciferase activity assay; detecting the location of hsa_circ_0072995 by Fluorescence in situ hybridization assay. RESULTS: Hsa_circ_0072995 was significantly upregulated in MDA-MB-231 cells compared with MCF-7 cells. Hsa_circ_0072995 regulated the invasion and migration of breast cancer cells. Hsa_circ_0072995 existed in the nucleus and cytoplasm, and the proportion of the two was roughly equal. Hsa_circ_0072995 bound to miR-30c-2-3p. Overexpression of miR-30c-2-3p inhibited breast cancer cells migration and invasion. Low expression of miR-30c-2-3p was correlated with poor overall survival by The Cancer Genome Atlas database. CONCLUSION: Hsa_circ_0072995 may be a novel biomarker for breast cancer, and may function in metastasis of breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , MicroRNAs/genética , RNA/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Células MCF-7 , Invasividade Neoplásica , RNA Circular , Regulação para Cima
3.
Biosci Rep ; 38(1)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29217524

RESUMO

MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3'-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy.


Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/genética , Apoptose/genética , Proliferação de Células/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
4.
Gene ; 623: 5-14, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28438694

RESUMO

Anthracycline/taxane-based chemotherapy regimens are usually used as neoadjuvant chemotherapies to decrease tumour size and prevent metastasis of advanced breast cancer. However, patients have a high risk of developing chemo-resistance during treatment through still unknown mechanisms. Glutathione S-transferase P1 (GSTP1), which belongs to the family of phase II metabolic enzymes, has been reported to function in detoxifying several anti-cancer drugs by conjugating them with glutathione. Previous studies have identified GSTP1 as a predictor of prognosis and chemo-resistance in breast cancer patients, but the mechanisms governing GSTP1-dependent drug resistance are still unclear. We have found that GSTP1 expression is much higher in adriamycin-resistant cells and their corresponding exosomes. The role of GSTP1-containing exosomes in conferring drug resistance was analysed through cell apoptosis and immunofluorescence staining assays. Furthermore, we analysed 42 cases of paired breast cancer tissues collected before and after anthracycline/taxane-based neoadjuvant chemotherapy by immunohistochemistry. Higher GSTP1 expression was shown in the progressive disease (PD)/stable disease (SD) group than in the partial response (PR)/complete response (CR) group both in the samples collected before and after the chemotherapy treatment. Interestingly, GSTP1 partly re-localized from the cell nucleus to the cytoplasm upon treatment, and similar results were obtained for the exosomal marker Tumour susceptibility gene 101 protein (TSG101), which also increased in the cytoplasm after chemotherapy. After analysing the serum exosomes of 30 patients treated with anthracycline/taxane-based neoadjuvant chemotherapy, we discovered that the levels of GSTP1 in exosomes from patients in the PD/SD group were significantly higher than those in the PR/CR group. Here, for the first time, we investigated a novel role for GSTP1-containing exosomes and their capability to transfer drug resistance and evaluated their clinical use in predicting chemo-resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Glutationa S-Transferase pi/metabolismo , Transporte Ativo do Núcleo Celular , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Núcleo Celular/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Exossomos/efeitos dos fármacos , Feminino , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA