Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378739

RESUMO

Optical materials capable of dynamically manipulating electromagnetic waves are an emerging field in memories, optical modulators, and thermal management. Recently, their multispectral design preliminarily attracts much attention, aiming to enhance their efficiency and integration of functionalities. However, the multispectral manipulation based on these materials is challenging due to their ubiquitous wavelength dependence restricting their capacity to narrow wavelengths. In this article, we cascade multiple tunable optical cavities with selective-transparent layers, enabling a universal approach to overcoming wavelength dependence and establishing a multispectral platform with highly integrated functions. Based on it, we demonstrate the multispectral (ranging from 400 nm to 3 cm), fast response speed (0.9 s), and reversible manipulation based on a typical phase change material, vanadium dioxide. Our platform involves tandem VO2-based Fabry-Pérot (F-P) cavities enabling the customization of optical responses at target bands independently. It can achieve broadband color-changing capacity in the visible region (a shift of ~60 nm in resonant wavelength) and is capable of freely switching between three typical optical models (transmittance, reflectance, and absorptance) in the infrared to microwave regions with drastic amplitude tunability exceeding 0.7. This work represents a state-of-art advance in multispectral optics and material science, providing a critical approach for expanding the multispectral manipulation ability of optical systems.

2.
J Colloid Interface Sci ; 652(Pt A): 780-788, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619257

RESUMO

Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ Îµz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached -53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.

3.
Light Sci Appl ; 12(1): 169, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419910

RESUMO

As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm, such as Finite Difference Time Domain, combined with manual parameter optimization. However, such methods are time-consuming, and it is difficult to keep the practical meta-atom spectrum being consistent with the ideal one. In addition, since the periodic boundary condition is used in the meta-atom design process, while the aperiodic condition is used in the array simulation, the coupling between neighboring meta-atoms leads to inevitable inaccuracy. In this review, representative intelligent methods for metasurface design are introduced and discussed, including machine learning, physics-information neural network, and topology optimization method. We elaborate on the principle of each approach, analyze their advantages and limitations, and discuss their potential applications. We also summarize recent advances in enabled metasurfaces for quantum optics applications. In short, this paper highlights a promising direction for intelligent metasurface designs and applications for future quantum optics research and serves as an up-to-date reference for researchers in the metasurface and metamaterial fields.

4.
Light Sci Appl ; 12(1): 78, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964150

RESUMO

Electromagnetic wave multiplexing, especially for that occurring at different incidences (spatial-frequency multiplexing), is pivotal for ultrathin multifunctional interfaces and high-capacity information processing and communication. It is yet extremely challenging based on passive and compact wave elements, since the wave excitation and scattering channels are exclusively coupled through gradient phases and hence momentum matching condition at the interface. Here, we propose a spin-momentum multiplexed paradigm called a super-reflector enabling on-demand control of both retroreflections and anomalous reflections using a non-interleaved single-celled metasurface. By multiplexing four channels connecting two spin states excited onto each input of three spatial frequencies, a total of twelve channels are engineered, among which three are retroreflected channels and the residual are anomalous reflection ones. Our compound multiplexed super-reflector allows five degrees of freedom in circular polarization Jones' matrix, approaching the intrinsic upper limit of such planar metasurface. The concept has been experimentally verified by a proof-of-concept super-reflector at microwave frequency, showcasing twelve reflected beams and a high efficiency exceeding 90.6% defined as the ratio of reflected power to incidence for each channel beam. Our strategy opens a new avenue for angle multiplexing and angle-resolved metadevices toward the capacity limit of 2D planar Jones' matrix.

5.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080119

RESUMO

Achieving multiple vortex beams with different modes in a planar microstrip array is pivotal, yet still extremely challenging. Here, a hybrid method combining both Pancharatnam−Berry (PB) phase that is induced by the rotation phase and excitation phase of a feeding line has been proposed for decoupling two orthogonal circularly polarized vortex beams. Theoretical analysis is derived for array design to generate quad vortex beams with different directions and an arbitrary number of topological charges. On this basis, two 8 × 8 planar arrays were theoretically designed in an X band, which are with topological charges of l1 = −1, l2 = 1, l3 = −1, and l4 = 1 in Case I and topological charges of l1 = −1, l2 = 1, l3 = −1, and l4 = 1 in Case II. To further verify the above theory, the planar array in Case I is fabricated and analyzed experimentally. Dual-LP beams are realized by using rectangular patch elements with two orthogonally distributed feeding networks on different layers based on two types of feeding: proximity coupling and aperture coupling. Both the numerical simulation and experimental measurement results are in good agreement and showcase the corresponding quad-vortex-beam characteristics within 8~12 GHz. The array achieves a measured S11 < −10 dB and S22 < −10 dB bandwidth of more than 33.4% and 29.2%, respectively. In addition, the isolation between two ports is better than −28 dB. Our strategy provides a promising way to achieve large capacity and high integration, which is of great benefit to wireless and radar communication systems.

6.
Adv Mater ; 34(38): e2202509, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35604541

RESUMO

Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.

7.
Research (Wash D C) ; 2021: 9806789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604760

RESUMO

Many real-world applications, including adaptive radar scanning and smart stealth, require reconfigurable multifunctional devices to simultaneously manipulate multiple degrees of freedom of electromagnetic (EM) waves in an on-demand manner. Recently, kirigami technique, affording versatile and unconventional structural transformation, has been introduced to endow metamaterials with the capability of controlling EM waves in a reconfigurable manner. Here, we report for a kirigami-inspired sparse meta-architecture, with structural density of 1.5% in terms of the occupation space, for adaptive invisibility based on independent operations of frequency, bandwidth, and amplitude. Based on the general principle of dipolar management via structural reconstruction of kirigami-inspired meta-architectures, we demonstrate reconfigurable invisibility management with abundant EM functions and a wide tuning range using three enantiomers (A, B, and C) of different geometries characterized by the folding angle ß. Our strategy circumvents issues of limited abilities, narrow tuning range, extreme condition, and high cost raised by available reconfigurable metamaterials, providing a new avenue toward multifunctional smart devices.

8.
Light Sci Appl ; 10(1): 75, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833215

RESUMO

Electromagnetic metasurface cloaks provide an alternative paradigm toward rendering arbitrarily shaped scatterers invisible. Most transformation-optics (TO) cloaks intrinsically need wavelength-scale volume/thickness, such that the incoming waves could have enough long paths to interact with structured meta-atoms in the cloak region and consequently restore the wavefront. Other challenges of TO cloaks include the polarization-dependent operation to avoid singular parameters of composite cloaking materials and limitations of canonical geometries, e.g., circular, elliptical, trapezoidal, and triangular shapes. Here, we report for the first time a conformal-skin metasurface carpet cloak, enabling to work under arbitrary states of polarization (SOP) at Poincaré sphere for the incident light and arbitrary conformal platform of the object to be cloaked. By exploiting the foundry three-dimensional (3D) printing techniques to fabricate judiciously designed meta-atoms on the external surface of a conformal object, the spatial distributions of intensity and polarization of its scattered lights can be reconstructed exactly the same as if the scattering wavefront were deflected from a flat ground at any SOP, concealing targets under polarization-scanning detections. Two conformal-skin carpet cloaks working for partial- and full-azimuth plane operation are respectively fabricated on trapezoid and pyramid platforms via 3D printing. Experimental results are in good agreement with numerical simulations and both demonstrate the polarization-insensitive cloaking within a desirable bandwidth. Our approach paves a deterministic and robust step forward to the realization of interfacial, free-form, and full-polarization cloaking for a realistic arbitrary-shape target in real-world applications.

9.
Research (Wash D C) ; 2021: 6382172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748763

RESUMO

Achieving full-polarization (σ) invisibility on an arbitrary three-dimensional (3D) platform is a long-held knotty issue yet extremely promising in real-world stealth applications. However, state-of-the-art invisibility cloaks typically work under a specific polarization because the anisotropy and orientation-selective resonant nature of artificial materials made the σ-immune operation elusive and terribly challenging. Here, we report a deterministic approach to engineer a metasurface skin cloak working under an arbitrary polarization state by theoretically synergizing two cloaking phase patterns required, respectively, at spin-up (σ+) and spin-down (σ-) states. Therein, the wavefront of any light impinging on the cloak can be well preserved since it is a superposition of σ+ and σ- wave. To demonstrate the effectiveness and applicability, several proof-of-concept metasurface cloaks are designed to wrap over a 3D triangle platform at microwave frequency. Results show that our cloaks are essentially capable of restoring the amplitude and phase of reflected beams as if light was incident on a flat mirror or an arbitrarily predesigned shape under full polarization states with a desirable bandwidth of ~17.9%, conceiving or deceiving an arbitrary object placed inside. Our approach, deterministic and robust in terms of accurate theoretical design, reconciles the milestone dilemma in stealth discipline and opens up an avenue for the extreme capability of ultrathin 3D cloaking of an arbitrary shape, paving up the road for real-world applications.

10.
Adv Mater ; 32(6): e1903983, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879999

RESUMO

Cylindrical vector vortex beams, a particular class of higher-order Poincaré sphere beams, are generalized forms of waves carrying orbital angular momentum with inhomogeneous states-of-polarization on their wavefronts. Conventional methods as well as the more recently proposed segmented/interleaved shared-aperture metasurfaces for vortex beam generation are either severely limited by bulky optical setups or by restricted channel capacity with low efficiency and mode number. Here, a noninterleaved vortex multiplexing approach is proposed, which utilizes superimposed scattered waves with opposite spin states emanating from all meta-atoms in a coherent manner, counter-intuitively enabling ultrahigh-capacity, high-efficiency, and flexible generation of massive vortex beams with structured state-of-polarization. A series of exemplary prototypes, implemented by sub-wavelength-thick metasurfaces, are demonstrated experimentally, achieving kaleidoscopic vector vortex beams. This methodology holds great promise for structured wavefront shaping, vortex generation, and high information-capacity planar photonics, which may have a profound impact on transformative technological advances in fields including spin-Hall photonics, optical holography, compressive imaging, electromagnetic communication, and so on.

11.
Light Sci Appl ; 8: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30651978

RESUMO

Achieving simultaneous polarization and wavefront control, especially circular polarization with the auxiliary degree of freedom of light and spin angular momentum, is of fundamental importance in many optical applications. Interferences are typically undesirable in highly integrated photonic circuits and metasurfaces. Here, we propose an interference-assisted metasurface-multiplexer (meta-plexer) that counterintuitively exploits constructive and destructive interferences between hybrid meta-atoms and realizes independent spin-selective wavefront manipulation. Such kaleidoscopic meta-plexers are experimentally demonstrated via two types of single-layer spin-wavefront multiplexers that are composed of spatially rotated anisotropic meta-atoms. One type generates a spin-selective Bessel-beam wavefront for spin-down light and a low scattering cross-section for stealth for spin-up light. The other type demonstrates versatile control of the vortex wavefront, which is also characterized by the orbital angular momentum of light, with frequency-switchable numbers of beams under linearly polarized wave excitation. Our findings offer a distinct interference-assisted concept for realizing advanced multifunctional photonics with arbitrary and independent spin-wavefront features. A variety of applications can be readily anticipated in optical diodes, isolators, and spin-Hall meta-devices without cascading bulky optical elements.

12.
Nat Mater ; 18(1): 48-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510270

RESUMO

Inspired by the developments in photonic metamaterials, the concept of thermal metamaterials has promised new avenues for manipulating the flow of heat. In photonics, the existence of natural materials with both positive and negative permittivities has enabled the creation of metamaterials with a very wide range of effective parameters. In contrast, in conductive heat transfer, the available range of thermal conductivities in natural materials is far narrower, strongly restricting the effective parameters of thermal metamaterials and limiting possible applications in extreme environments. Here, we identify a rigorous correspondence between zero index in Maxwell's equations and infinite thermal conductivity in Fourier's law. We also propose a conductive system with an integrated convective element that creates an extreme effective thermal conductivity, and hence by correspondence a thermal analogue of photonic near-zero-index metamaterials, a class of metamaterials with crucial importance in controlling light. Synergizing the general properties of zero-index metamaterials and the specific diffusive nature of thermal conduction, we theoretically and experimentally demonstrate a thermal zero-index cloak. In contrast with conventional thermal cloaks, this meta-device can operate in a highly conductive background and the cloaked object preserves great sensitivity to external temperature changes. Our work demonstrates a thermal metamaterial which greatly enhances the capability for molding the flow of heat.

13.
Nanoscale Res Lett ; 13(1): 386, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498863

RESUMO

We theoretically and experimentally proposed a new structure of ultra-wideband and thin perfect metamaterial absorber loaded with lumped resistances. The thin absorber was composed of four dielectric layers, the metallic double split ring resonators (MDSRR) microstructures and a set of lumped resistors. The mechanism of the ultra-wideband absorption was analyzed and parametric study was also carried out to achieve ultra-wideband operation. The features of ultra-wideband, polarization-insensitivity, and angle-immune absorption were systematically characterized by the angular absorption spectrum, the near electric-field, the surface current distributions and dielectric and ohmic losses. Numerical results show that the proposed metamaterial absorber achieved perfect absorption with absorptivity larger than 80% at the normal incidences within 4.52~25.42 GHz (an absolute bandwidth of 20.9GHz), corresponding to a fractional bandwidth of 139.6%. For verification, a thin metamaterial absorber was implemented using the common printed circuit board method and then measured in a microwave anechoic chamber. Numerical and experimental results agreed well with each other and verified the desired polarization-insensitive ultra-wideband perfect absorption.

14.
Opt Express ; 26(18): 23760-23769, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184872

RESUMO

In this paper, we present a general method to realize polarization-selective dual-wavelength gap-surface plasmon metasurfaces (GSPMs), which are composed of strongly anisotropic meta-atoms periodically arranged in a rectangular lattice with two degrees of freedom to independently control the reflection phase and amplitude of orthogonal linear polarizations at two discrete wavelengths. We design and demonstrate dual-wavelength GSPMs as polarization beam splitters and focusing metamirrors operating at 850 and 1550 nm simultaneously. Our work provides a general approach to design multiwavelength, multifunctional metasurfaces with various potential applications.

15.
Sci Rep ; 6: 38255, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901088

RESUMO

Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices' performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.

16.
Opt Express ; 24(24): 27836-27848, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906352

RESUMO

Pancharatnam-Berry (PB) metasurfaces have intrigued a great deal of interest in recent years for anomalous reflection/refraction, vortex plate, orbital angular momentum, flat lens, photonic spin hall effect (PSHE), holograms and reflect/transmit arrays. However, almost all designs are restricted to fixed electrical performance/functionality once the design is finished. Here, we report for the first time a strategy for PB metasurface with agile working frequency by involving each meta-atom with tunable PIN diodes. For verification, a tunable PB metasurface with frequency reconfigurability is designed and numerically characterized across C and X band. By controlling the external voltages imposed on the diodes, numerical results show that the operation band with 180° phase difference between orthogonal reflection coefficients can be dynamically controlled. As such, the resulting PB metasurface composed of these orderly rotated meta-atoms exhibits a broadband PSHE with nearly 100% conversion efficiency in the "On" state while switches to dual well-separated bands in the "Off" state. Our proposal, not confined to PHSE, set a solid platform for PB phase control and can be populated to any dual-functional and/or multifunctional devices with high integrity, stability and low cost.

17.
Opt Express ; 24(20): 22606-22615, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828331

RESUMO

Functional integration is crucial and has become a research interest in recent years; however, available efforts suffer from low efficiency and narrow operating bandwidth. Here, we propose a novel strategy to design bifunctional meta-surface with high efficiency and largely enhanced bandwidth in reflection geometry. For demonstration, we designed and fabricated a bifunctional meta-surface which enables both focusing and anomalous reflection under different polarizations. The working bandwidth is significantly extended by using the dual-resonant three-turn meander-line resonator (TMLR) element which provides an almost consistent phase response within a large frequency interval. For potential applications, we engineered a bifunctional antenna by launching the designed meta-surface with proper feed sources. Numerical and experimental results coincide well, indicating bifunctionalities of high gain pencil-beam radiation (reflectarray) and beam steering radiation with comparable performances. Our results can stimulate the realizations of high-performance meta-surfaces and antenna systems.

18.
Sci Rep ; 6: 27503, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272350

RESUMO

Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.

19.
J Opt Soc Am A Opt Image Sci Vis ; 31(9): 2075-82, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25401449

RESUMO

Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

20.
Sci Rep ; 4: 5744, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25034268

RESUMO

A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA