Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609224

RESUMO

The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.


Assuntos
Morus , Nanoestruturas , Antocianinas , Polissacarídeos , Pectinas , Água
2.
Food Res Int ; 181: 114120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448101

RESUMO

Monoterpenes are typical aroma components in muscat grapes and wines, closely related to its geographical origins. However, the mechanism underlying the geographical differences of monoterpenes remains to be elucidated, especially in the Chinese viticulture regions. This study investigated the diversity of six Chinese viticultural vineyards (YT, XF, SS, XX, WW and CL) in the monoterpene composition of Vitis vinifera L. cv.'Muscat Hamburg' grapes and the resulted wines. Monoterpenes were analyzed by HS-SPME- GC-MS. The total amount of free and bound monoterpenes varied dramatically between grapes of different vineyards, and their contents were obviously higher in YT region grapes. The OAVs for 18 monoterpenes of grapes from the YT vineyard were relative higher than those of other regions, and the floral odor could distinguish grapes from different regions. The total free monoterpenes were highest in the YT region wine. Concentrations of total bound monoterpenes ranged from 711.13 µg/L (XF region) to 1078.30 µg/L (CL region). A correlation analysis showed that all monoterpenes showeda positive correlation with mean relative humidity, sum rainfall, and a negative correlation with sum duration of sunshine and mean temperature. This study would provide some new insights to understand the geographical differences of monoterpenes, and the results would facilitate the effective viticultural treatment of grapes to improve the quality of the aroma.


Assuntos
Vitis , Vinho , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Monoterpenos
3.
J Agric Food Chem ; 72(8): 4339-4347, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351620

RESUMO

This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Pressão Osmótica , Parede Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quitina Sintase/metabolismo
4.
Food Res Int ; 176: 113803, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163684

RESUMO

To extend shelf life of fermented spicy Chinese cabbage sauce at room temperature, the effects of electron beam irradiation (EBI), high pressure processing (HPP), pasteurization (PT) and autoclave sterilization (AS) treatments on the colony counts of Lactobacillus plantarum, phytochemicals, antioxidant activities and volatile compounds were investigated. Results showed that thermal and non-thermal treatments could significantly decrease the colony counts of Lactobacillus plantarum, in which EBI and AS treatments inactivated Lactobacillus plantarum thoroughly. EBI and HPP treatments were superior to PT and AS treatments in terms of volatile compounds, bioactive compounds and antioxidant activities. The total contents of volatile compounds in sauces treated by EBI and HPP were significantly increased by 43.92%-61.87% and 71.53%-84.46%, respectively, and the new formed substance 2,3-butanedione endowed sauces with sweet and creamy aroma. In addition, HPP treatment improved the extractable contents of total phenolics and carotenoids, retained capsicum red pigment content, and significantly enhanced antioxidant capacities of sauces. Sauce treated by HPP at 200 MPa exhibited the highest total carotenoid content, DPPH radical scavenging activity and FRAP, increasing by 9.27%, 2.24% and 16.13%, respectively, compared with CK. EBI treatment exhibited higher total phenolic content and FRAP, which positively depended on the dose. Therefore, HPP and EBI treatments were suggested as potential technologies to improve shelf-life stability and volatile compounds of fermented spicy Chinese cabbage sauce.


Assuntos
Brassica , Lactobacillus plantarum , Antioxidantes/análise , Carotenoides/análise , Pasteurização , Fenóis/química , Compostos Fitoquímicos
5.
Food Chem ; 438: 138067, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38039865

RESUMO

In this study, figs were irradiated with X-rays doses of 1.0, 3.0, and 5.0 kGy and stored at 4 °C for 20 d to evaluate effects of X-ray on redox homeostasis and energy metabolism in figs. Non-irradiated figs were recorded as control group. Results indicated that 3.0 kGy X-rays delayed fig color discoloration by inhibiting the ΔE* values. The electrolyte leakage, MDA and O2-· levels of figs were significantly alleviated. Energy metabolism assay revealed that 3.0 kGy X-rays could significantly maintain higher activities of H+-ATPase, Ca2+-ATPase, SDH, CCO, G6PDH and 6PGDH of figs. 3.0 kGy X-rays also retained mitochondria membrane integrity of figs. Furthermore, 3.0 kGy X-rays resulted in 26.09 % higher NADK activity and 16.30 % lower NADH content than the control. The study proves that X-ray irradiation can be used as figs preservation means to maintain redox homeostasis and regulate energy metabolism, thus lengthening the shelf life of figs.


Assuntos
Ficus , Raios X , Oxirredução
6.
Food Res Int ; 174(Pt 1): 113628, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986479

RESUMO

Protein-bound Nε-(carboxymethyl)lysine (CML), an advanced glycation end product within meat products, poses a potential health risk to humans. The objective of this study was to explore the impact of various edible oils on the formation of protein-bound CML in roasted pork patties. Eleven commercially edible oils including lard oil, corn oil, palm oil, olive oil, flaxseed oil, blended oil, camellia oil, walnut oil, soybean oil, peanut oil, and colza oil were added to pork tenderloin mince, respectively, at a proportion of 4 % to prepare raw pork patties. The protein-bound CML contents in the pork patties were determined by HPLC-MS/MS before and after roasting at 200 °C for 20 min. The results indicated that walnut oil, flaxseed oil, colza oil, olive oil, lard oil, corn oil, blended oil, and palm oil significantly reduced the accumulation of protein-bound CML in pork patties, of which the inhibition rate was in the 24.43 %-37.96 % range. Moreover, the addition of edible oil contributed to a marginal reduction in the loss of lysine. Meanwhile, glyoxal contents in pork patties were reduced by 16.72 %-43.21 % after roasting. Other than blend oil, all the other edible oils restrained protein oxidation in pork patties to varying degrees (between 20.16 % and 61.26 %). In addition, camellia oil, walnut oil, and flaxseed oil increased TBARS values of pork patties by 2.2-8.6 times when compared to the CON group. After analyzing the fatty acid compositions of eleven edible oils, five main fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid) were selected to establish Myofibrillar protein-Glucose-fatty acids systems to simulate the roasting process. The results showed that palmitic acid, oleic acid, linoleic acid, and linolenic acid obviously mitigated the formation of myofibrillar protein-bound CML, exhibiting suppression rates ranging from 10.38 % to 40.32 %. In conclusion, the addition of specific edible oil may curb protein-bound CML production in roasted pork patty by restraining protein or lipid oxidation, reducing lysine loss, and suppressing glyoxal production, which may be attributed to the fatty acid compositions of edible oils. This finding provides valuable guidance for the selection of healthy roasting oils in the thermal processing of meat products.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Humanos , Suínos , Azeite de Oliva , Óleo de Semente do Linho , Lisina , Óleo de Milho , Espectrometria de Massas em Tandem , Óleos de Plantas , Ácido Linoleico , Ácido Palmítico , Ácido Oleico , Glioxal , Ácidos Linolênicos
7.
J Agric Food Chem ; 71(33): 12538-12548, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578164

RESUMO

High concentrations of ethanol could cause intracellular oxidative stress in yeast, which can lead to ethanol-oxidation cross-stress. Antioxidant dipeptides are effective in maintaining cell viability and stress tolerance under ethanol-oxidation cross-stress. In this study, we sought to elucidate how antioxidant dipeptides affect the yeast cell wall and membrane defense systems to enhance stress tolerance. Results showed that antioxidant dipeptide supplementation reduced cell leakage of nucleic acids and proteins by changing cell wall components under ethanol-oxidation cross-stress. Antioxidant dipeptides positively modulated the cell wall integrity pathway and up-regulated the expression of key genes. Antioxidant dipeptides also improved the cell membrane integrity by increasing the proportion of unsaturated fatty acids and regulating the expression of key fatty acid synthesis genes. Moreover, the addition of antioxidant dipeptides significantly (p < 0.05) increased the content of ergosterol. Ala-His (AH) supplementation caused the highest content of ergosterol, with an increase of 23.68 ± 0.01% compared to the control, followed by Phe-Cys (FC) and Thr-Tyr (TY). These results revealed that the improvement of the cell wall and membrane functions of antioxidant dipeptides was responsible for enhancing the ethanol-oxidation cross-stress tolerance of yeast.


Assuntos
Antioxidantes , Saccharomyces cerevisiae , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Etanol/metabolismo , Ergosterol , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo
8.
Ultrason Sonochem ; 98: 106508, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442055

RESUMO

The relationship between quality attributes and microstructure in strawberry pulp after pasteurization (PS), ultrasound (US), electron beam irradiation (EB), and high pressure (HP) treatments was investigated. The results showed that US treatment decreased the viscosity to the lowest by 80.15% and increased the a* value, cloudy stability, and contents of titratable acid, total soluble solid, organic acids, total phenols, total flavonoids, and total anthocyanins (TAC), as well as its antioxidant capacity, due to the decrease in particle size, the destruction of microstructure, and the release of intracellular compounds. US and EB treatments could maintain the volatile compounds. The greatest deterioration in TAC and volatile compound content was found in the pulp treated with PS and HP treatments. HP treatment was beneficial to the enhancement of apparent viscosity, organic acids, and soluble sugar. These results provided insights into the enhancement of quality attributes in strawberry pulp due to the microstructure change.


Assuntos
Antocianinas , Fragaria , Antocianinas/análise , Fragaria/química , Antioxidantes/química , Flavonoides/análise , Pasteurização , Ácidos/análise , Frutas/química
9.
Food Microbiol ; 114: 104288, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290871

RESUMO

Although high gravity brewing technology has been widely used for beer industries due to its economic benefits, yeast cells are subjected to multiple environmental stresses throughout the fermentation process. Eleven bioactive dipeptides (LH, HH, AY, LY, IY, AH, PW, TY, HL, VY, FC) were selected to evaluate their effects on cell proliferation, cell membrane defense system, antioxidant defense system and intracellular protective agents of lager yeast against ethanol-oxidation cross-stress. Results showed that the multiple stresses tolerance and fermentation performance of lager yeast were enhanced by bioactive dipeptides. Cell membrane integrity was improved by bioactive dipeptides through altering the structure of macromolecular compounds of the cell membrane. Intracellular reactive oxygen species (ROS) accumulation was significantly decreased by bioactive dipeptides, especially for FC, decreasing by 33.1%, compared with the control. The decrease of ROS was closely related to the increase of mitochondrial membrane potential, intracellular antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and glycerol level. In addition, bioactive dipeptides could regulate the expression of key genes (GPD1, OLE1, SOD2, PEX11, CTT1, HSP12) to enhance the multilevel defense systems under ethanol-oxidation cross-stress. Therefore, bioactive dipeptides should be potentially efficient and feasible bioactive ingredients to improve the multiple stresses tolerance of lager yeast during high gravity fermentation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Fermentação , Etanol/metabolismo , Cerveja , Peroxinas/metabolismo , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Food Chem ; 424: 136456, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37267648

RESUMO

This study investigated the digestive stability of anthocyanins (ACNs) and their interaction with three pectin fractions-water-soluble pectin (WSP), cyclohexanetrans-1,2-diamine tetra-acetic acid-soluble pectin (CSP), and sodium carbonate-soluble pectin (NSP)-in strawberry pulp processed by pasteurization (PS), ultrasound (US), electron beam (EB) irradiation, and high pressure (HP). Compared with the control group, the ACNs content increased to the highest level (312.89 mg/mL), but the retention rate of ACNs in the simulated intestine decreased significantly after US treatment. The monosaccharide compositions indicated that the WSP and CSP possessed more homogalacturonan (HG) domains than the NSP, which contains more rhamngalacturonan-I (RG-I) domains. The microstructure of US-treated pectin was damaged and fragmented. Comprehensive analysis showed that the retention rate of ACNs was closely related to the pectin structure, primarily reflected by the degree of linearity and the integrity of structure. These results revealed the structure-activity relationship between ACNs and pectin during pulp processing.


Assuntos
Fragaria , Antocianinas/química , Pectinas/química , Digestão , Relação Estrutura-Atividade , Água/química
11.
Food Chem X ; 18: 100676, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122554

RESUMO

Green leaf volatiles (GLVs), play important roles in the green and fresh aroma characteristics of grape berries. The evolution of GLV profiles regarding the varietal difference during grapevine phenological ripening is not well understood. This study generated the GLV profiles of five Vitis vinifera L. cultivars ('Cabernet Sauvignon,' 'Cabernet Franc,' 'Cabernet Gernischt,' 'Chardonnay,' and 'Sauvignon Blanc') at five ripening stages. GLVs were distinctive at different E-L stages for each grape variety. (E)-2-hexen-1-ol, 1-hexanol, and hexanal were the dominant components in all mature berries. In terms of total GLV content, all varieties reached the maximum at maturity in the 2019 vintage, and the total GLV content was higher in mature Sauvignon Blanc and Cabernet Sauvignon grapes. In the 2020 vintage, the total GLV content in Chardonnay and Sauvignon Blanc berries rapidly accumulated at veraison and peaked before harvest. The present results could help winemakers create a good balance of wine aroma.

12.
Foods ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37048311

RESUMO

SGGY, an antioxidant tetrapeptide identified from walnut protein hydrolysate in our previous study, has been suggested to possess the potential to alleviate oxidative stress in cells. In this paper, the neuroprotective effects of SGGY on H2O2-stimulated oxidative stress in SH-SY5Y cells and the underlying mechanisms were investigated. Results showed that SGGY alleviated H2O2-induced oxidative stress by decreasing the intracellular reactive oxygen species (ROS) level and altering the mitochondrial membrane potential (MMP), thereby inhibiting apoptosis and increasing cell viability. SGGY significantly restored antioxidant enzyme activities and reduced malondialdehyde (MDA) content accordingly. Moreover, SGGY promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and suppressed the H2O2-induced activation of JNK and p38 mitogen-activated protein kinases (MAPKs). Taken together, these results suggested that SGGY protected SH-SY5Y cells from H2O2-provoked oxidative stress by enhancing the ability of cellular antioxidant defense, and the possible mechanism involved MAPKs and Nrf2 signaling pathways.

13.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832778

RESUMO

Umami peptides are important taste components of foods. In this study, umami peptides from Hypsizygus marmoreus hydrolysate were purified through ultrafiltration, gel filtration chromatography, and RP-HPLC, and then identified using LC-MS/MS. The binding mechanism of umami peptides with the receptor, T1R1/T1R3, was investigated using computational simulations. Five novel umami peptides were obtained: VYPFPGPL, YIHGGS, SGSLGGGSG, SGLAEGSG, and VEAGP. Molecular docking results demonstrated that all five umami peptides could enter the active pocket in T1R1; Arg277, Tyr220, and Glu301 were key binding sites; and hydrogen bonding and hydrophobic interaction were critical interaction forces. VL-8 had the highest affinity for T1R3. Molecular dynamics simulations demonstrated that VYPFPGPL (VL-8) could be steadily packed inside the binding pocket of T1R1 and the electrostatic interaction was the dominant driving force of the complex (VL-8-T1R1/T1R3) formation. Arg residues (151, 277, 307, and 365) were important contributors to binding affinities. These findings provide valuable insights for the development of umami peptides in edible mushrooms.

14.
Food Chem ; 407: 135199, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521389

RESUMO

Physicochemical properties and morphological features of pectin in high-pressure-processing (JHPP) and thermal-processing (JTP) treated cloudy hawthorn juice were investigated based on acid heating extraction. Pectin from hawthorn juice was identified as low methoxy pectin (41.77%), which was significantly reduced to 34.56%-39.51% from JHPP, while pectin esterification degree (DE) from JTP increased to 45.58%, which can also be confirmed by Fourier transform infrared spectroscopy. In comparison to control, pectin linearity of JHPP and JTP significantly decreased with more highly branched-chains. However, no significate difference was observed in thermostability, crystallinity and main functional groups. Interestingly, a large number of aggregations was observed in JHPP pectin, and the intermodular distance of JTP pectin was enhanced, which was consistent with the results of viscosity, molecular weight and DE. These findings provided insights into utilization of hawthorn pectin and application of high-pressure processing (HPP) for improving quality property of fruit products by pectin modification.


Assuntos
Crataegus , Pectinas , Pectinas/química , Crataegus/química , Calefação , Viscosidade , Peso Molecular
15.
Appl Biochem Biotechnol ; 195(10): 6032-6049, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36418709

RESUMO

The phytochemical characteristics and antioxidant capacities of fermented apple juice (FAJ) by Lactobacillus plantarum 90 (Lp90) and Lactobacillus acidophilus 85 (La85) during refrigerated storage and simulated gastrointestinal digestion (SGD) were investigated. Viable counts of Lp90 and La85 were decreased, while phenolic content and antioxidant capacities were improved during refrigerated storage, especially for the increased chlorogenic acid content. Ester content was decreased slightly after refrigeration, while the primary esters including ethyl acetate, amyl acetate, and ethyl 2-methylbutyrate were significantly increased (p < 0.05). Furthermore, ketone content was increased significantly after refrigeration (p < 0.05). In addition, viable counts of Lp90 and La85 remained higher than 6 log CFU/mL after SGD. The presence of probiotics delayed the decrease of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability and increased ferric reducing antioxidant power (FRAP) of FAJ. The contents of gallic acid, chlorogenic acid, epicatechin, ferulic acid, and phlorizin were decreased, while ellagic acid and rutin contents in FAJ were significantly increased after SGD (p < 0.05).


Assuntos
Lactobacillus plantarum , Malus , Probióticos , Antioxidantes/química , Malus/metabolismo , Fermentação , Lactobacillus plantarum/metabolismo , Lactobacillus acidophilus , Digestão
16.
Food Res Int ; 162(Pt B): 112065, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461322

RESUMO

Monoterpenes are important compounds that influence the aromas of grapes and wines. The molecular mechanisms underlying the changes in monoterpenes during the grape ripening period have not been thoroughly characterized. In this study, the free and bound monoterpene profiles in Muscat Hamburg grape berries at different phenological stages were investigated at the transcriptomic and metabolomic levels. Principal component analyses indicated that the free and bound monoterpene profiles were affected by the developmental stages. Most monoterpenes were produced slowly before veraison, but they accumulated rapidly during the veraison period, after which their contents decreased slightly in mature berries. The transcriptomic analysis revealed 35 differentially expressed genes involved in the monoterpene synthesis pathway. The VIT_04s0008g04970, VIT_03s0063g02030 and VIT_15s0024g00850 expression levels were consistent with the changes in the accumulation of monoterpene compounds. The quantitative real-time polymerase chain reaction analysis of eight key differentially expressed genes in the monoterpenoid pathway confirmed the RNA-seq data were reliable. Our findings provide new insights into Muscat Hamburg grape aroma development. Further research on the period with the highest aroma potential may lead to enhanced grape berry aroma qualities.


Assuntos
Vitis , Vitis/genética , Frutas/genética , Transcriptoma , Monoterpenos , Metabolômica
17.
Food Res Int ; 161: 111870, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192990

RESUMO

This study aimed to investigate the absorption and transport of myofibrillar protein-bound Nɛ-(carboxymethyl)lysine (MP-bound CML) in Caco-2 cells after simulated gastrointestinal digestion. Four kinds of MP-bound CML hydrolysates with molecular weights (MWs) less than 1 kDa, 1-3 kDa, 3-5 kDa and greater than 5 kDa, were obtained by ultrafiltration; their absorption and transport were studied in Caco-2 cells. Peptide-bound CML in hydrolysates with MWs less than 1 kDa was absorbed by 6.58 % and might transport across Caco-2 cells monolayer through paracellular pathway; peptide-bound CML in hydrolysates with MWs 1-3 kDa was absorbed by 12.8 % and might transport across Caco-2 cells monolayer through paracellular pathway and transcytosis route; peptide-bound CML in hydrolysates with MWs 3-5 kDa was absorbed by 14.66 % and might be through active route via PepT-1 transport across Caco-2 cells monolayer; whereas protein-bound CML in hydrolysates with MWs greater than 5 kDa was only absorbed by 1.02 %, which was hardly transported into Caco-2 cells. In conclusion, MP-bound CML could be absorbed by 35.06 % into Caco-2 cells after simulated gastrointestinal digestion and is transported across Caco-2 cells through paracellular pathway, transcytosis route and active route via PepT-1.


Assuntos
Lisina , Peptídeos , Transporte Biológico , Células CACO-2 , Digestão , Humanos , Lisina/metabolismo , Compostos Organoplatínicos , Peptídeos/metabolismo
18.
Foods ; 11(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230097

RESUMO

We investigated the effects of different proportions of hydroxypropyl methylcellulose (HPMC) on the properties of κ-carrageenan film. Biodegradable κ-carrageenan/HPMC films (κCHM film) were prepared by the solution casting method and their physicochemical properties were evaluated. The results show that the addition of HPMC enhanced oxygen barrier capacity, mechanical properties (tensile strength and elongation at break) and thermal stability. Notably, when the addition of HPMC increased to 6% of κ-carrageenan (w:w), the κCHM-6 film not only effectively improved water resistance, including lower water solubility, water vapor permeability and higher water contact angle, but also made the structure of the κCHM-6 film more compact. Moreover, rheological measurement and atomic force microscopy characterization showed that κ-carrageenan had suitable compatibility with HPMC. Attenuated total reflection-Fourier transform infrared spectroscopy analysis further confirmed the enhancement of hydrogen bond interactions. This finding could contribute to promoting the potential application of κCHM film in food packaging.

19.
Foods ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36076775

RESUMO

Betulinic acid (BA) has anti-inflammatory, antioxidative stress, and antitumor activities, but BA bioavailability is low due to its poor water solubility and short half-life. This study aimed to construct a BA delivery system to improve its utilization in vitro. Glycosylated zein (G-zein) was prepared using the wet heating method, and BA-loaded zein composite nanoparticles were prepared using the antisolvent method. Compared to zein, G-zein had the advantages of higher solubility and lower surface hydrophobicity. The encapsulation efficiency of G-zein@BA reached over 80% when the BA concentration was 1 mg/mL. Compared to zein@BA nanoparticles, G-zein@BA was characterized by smaller droplets, higher encapsulation efficiency, and a more stable morphology. The sustained release and solubility of G-zein@BA nanoparticles were also superior to those of zein@BA. Compared with free BA, the dispersions of zein@BA and G-zein@BA nanoparticles in water increased 2.27- and 2.91-fold, respectively. In addition, zein@BA and G-zein@BA nanoparticles markedly inhibited the proliferation of HepG2 cells. This study provides new insights into the structural properties and antitumor activity of BA composite nanoparticles to aid in the development of zein particles as functional materials to deliver bioactive compounds.

20.
Foods ; 11(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35885264

RESUMO

In this study, to improve the processing performance of whole grain highland barley flour (whole grain HB flour), they were prepared by sand-roasting, far-infrared baking, steam explosion, and extrusion, and the effects of on functional properties and storage characteristics were measured. The results indicated that sand-roasting, far-infrared baking, and steam explosion all caused cracks and honeycomb structures in the outer layer and endosperm of the highland barley. The XRD analysis results indicated that highland barley starch treated by far-infrared baking exhibited typical A-type crystal structure, while sand-roasting, steam explosion, and extrusion presented the typical V-type. The results of DSC analysis revealed that the onset temperature (To), peak temperature (Tp), gelatinization enthalpy (ΔH), peak viscosity (PV), trough viscosity (TV), and final viscosity (FV) decreased significantly, while the swelling power, water-holding capacity and oil-holding capacity increased significantly. During the storage period, the moisture content and lipase activity of the whole grain HB flour after thermal treatment remained at a low level; the fatty acid value, peroxide value, and malondialdehyde value increased; finally, the cooked whole grain HB flour was unstable during storage. The functional properties of whole grain HB flour can be improved by steam explosion, and will then have better storage stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA