Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722818

RESUMO

AIM: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). Heterozygous deficiency of Adk protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of Adk in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. Metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation and AAA formation. CONCLUSION: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.

2.
Sci Transl Med ; 16(737): eadk3868, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446902

RESUMO

Anti-vascular endothelial growth factor therapy has had a substantial impact on the treatment of choroidal neovascularization (CNV) in patients with neovascular age-related macular degeneration (nAMD), the leading cause of vision loss in older adults. Despite treatment, many patients with nAMD still develop severe and irreversible visual impairment because of the development of subretinal fibrosis. We recently reported the anti-inflammatory and antiangiogenic effects of inhibiting the gene encoding adenosine receptor 2A (Adora2a), which has been implicated in cardiovascular disease. Here, using two mouse models of subretinal fibrosis (mice with laser injury-induced CNV or mice with a deficiency in the very low-density lipoprotein receptor), we found that deletion of Adora2a either globally or specifically in endothelial cells reduced subretinal fibrosis independently of angiogenesis. We showed that Adora2a-dependent endothelial-to-mesenchymal transition contributed to the development of subretinal fibrosis in mice with laser injury-induced CNV. Deficiency of Adora2a in cultured mouse and human choroidal endothelial cells suppressed induction of the endothelial-to-mesenchymal transition. A metabolomics analysis of cultured human choroidal endothelial cells showed that ADORA2A knockdown with an siRNA reversed the increase in succinate because of decreased succinate dehydrogenase B expression under fibrotic conditions. Pharmacological inhibition of ADORA2A with a small-molecule KW6002 in both mouse models recapitulated the reduction in subretinal fibrosis observed in mice with genetic deletion of Adora2a. ADORA2A inhibition may be a therapeutic approach to treat subretinal fibrosis associated with nAMD.


Assuntos
Doenças Cardiovasculares , Neovascularização de Coroide , Humanos , Animais , Camundongos , Idoso , Células Endoteliais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Transição Endotélio-Mesênquima
3.
Pharmacol Res ; 203: 107156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522762

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Assuntos
Aterosclerose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Receptor A2A de Adenosina , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Masculino , Camundongos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Knockout , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais
4.
Int Immunopharmacol ; 127: 111399, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38142641

RESUMO

Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. Hydrogen (H2) is the lightest gas with multiple biological effects such as high selective anti-oxidation, anti-inflammation and anti-apoptosis. However, the dose effects and innate immune mechanisms of intraperitoneal injection of H2 on ALD are limited. Here, we used acute ethanol-induced hepatotoxicity mice models to estimate the actions of intraperitoneal injection of H2 on ALD. The effects of H2 on acute ethanol-induced liver damage were examined by hepatic oil red O staining, quantitative PCR (qPCR) for lipid metabolic genes, hepatic triglyceride (TG) and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Hepatic mitochondrial superoxide (MitoSOX), 3-nitrotyrosine (3-NT), malondialdehyde (MDA), and glutathione (GSH) levels were examined to evaluate oxidative stress. Immunoblot, and immunofluorescence staining were used to further confirm the innate immune molecular targets of H2. Our results showed that intraperitoneal injection of H2 improved acute ethanol-induced liver injury in mice in a dose dependent manner, as indicated by decreasing serum ALT and AST levels, hepatic TG levels, and increasing lipid export genes (Mttp and Apob) mRNA levels and reducing fatty acid uptake gene (CD36) mRNA levels. Mechanistically, H2 inhibited hepatic oxidative stress as indicated by reducing reactive oxygen species (ROS), 3-NT, and MDA levels in the liver, while increasing hepatic GSH levels; inhibited the overactived TLR4/9-NF-κB-TNF-α/IL-1ß/IL-18 innate immune signaling; suppressed the canonical Caspase-1-GSDMD pyroptosis signaling, and the non-canonical pyroptosis signaling, such as Caspase-11-GSDMD, Caspase-8-GSDMD and Caspase-3-GSDME signaling. Therefore, our study highlights that intraperitoneal injection of H2 may represent a novel therapeutic and safe strategy for ALD via modulating oxidative stress, innate immunity and pyroptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Etanol/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Piroptose , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Estresse Oxidativo , Glutationa/metabolismo , Triglicerídeos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Imunidade Inata , RNA Mensageiro/metabolismo , Caspases/metabolismo
5.
Aging (Albany NY) ; 15(9): 3738-3758, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166418

RESUMO

Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.


Assuntos
Proteínas de Membrana , MicroRNAs , Neoplasias , Serina Endopeptidases , Humanos , Proteínas de Membrana/genética , Neoplasias/genética , Serina Endopeptidases/genética
6.
Eur Heart J ; 44(14): 1265-1279, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36721994

RESUMO

AIMS: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS: Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION: Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Roedores/metabolismo , Remodelação Vascular/fisiologia , Artéria Pulmonar , Purinas/metabolismo , Células Cultivadas , Hipóxia/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
7.
J Mol Cell Cardiol ; 174: 88-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473288

RESUMO

Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms.


Assuntos
Adenosina Quinase , Infarto do Miocárdio , Camundongos , Animais , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Interleucina-4/genética , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fenótipo , Camundongos Knockout , Camundongos Endogâmicos C57BL
8.
Theranostics ; 12(18): 7788-7803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451856

RESUMO

Rationale: T-cell-redirecting bispecific antibodies (bsAbs) and trispecific antibodies (tsAbs) designed to recognize different epitopes or antigens have emerged as promising cancer therapies. Current approaches are all designed to include another antibody specific to the site of the primary antibody, and the molecular structures are generally established. However, the dimensions of target molecule and epitope location play a key role in the efficiency of the immunological synapse (IS) formation and subsequent T-cell-redirecting activities, therefore the connection flexibility of these antibodies determines the geometries of different formats of these molecules and will have a major impact on the efficacy. Methods: We describe a novel recombination strategy using various linker designs to site-specifically fuse anti-Her2 (2Rs15) or anti-VEGFR2 (3VGR19) nanobodies to different positions of the anti-CD3 antibody fragment (Fab, SP34). Based on the comparison among the various antigen-specific bsAbs, we could determine the desired fusion site of each nanobody to SP34, and further ensure the optimal structure of tsAbs with synergistic dual-antigen enhanced T-cell-redirecting activities. Results: This approach allows precise control of the formation of IS between Her2- and/or VEGFR2-expressing cancer cells and T cells, to obtain the optimal structure of the Her2/VEGFR2/CD3 tsAb without the need to map antibody-binding epitopes. Optimization of Her2/VEGFR2/CD3 tsAb results in enhanced T-cell-redirecting in vitro and in vivo antitumor efficacy compared with the corresponding bsAbs alone or in combination, and the potency to overcome tumor relapse due to antigen escape or resistance to Herceptin and Cyramza therapy. Conclusion: The novel design strategy for developing tsAbs using a site-specific recombination approach represents a promising platform for immuno-oncology and in applications other than cancer therapy.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Ativação Linfocitária , Epitopos , Especificidade de Anticorpos
9.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36264636

RESUMO

Pathological angiogenesis is a major cause of irreversible blindness in individuals of all age groups with proliferative retinopathy (PR). Mononuclear phagocytes (MPs) within neovascular areas contribute to aberrant retinal angiogenesis. Due to their cellular heterogeneity, defining the roles of MP subsets in PR onset and progression has been challenging. Here, we aimed to investigate the heterogeneity of microglia associated with neovascularization and to characterize the transcriptional profiles and metabolic pathways of proangiogenic microglia in a mouse model of oxygen-induced PR (OIR). Using transcriptional single-cell sorting, we comprehensively mapped all microglia populations in retinas of room air (RA) and OIR mice. We have unveiled several unique types of PR-associated microglia (PRAM) and identified markers, signaling pathways, and regulons associated with these cells. Among these microglia subpopulations, we found a highly proliferative microglia subset with high self-renewal capacity and a hypermetabolic microglia subset that expresses high levels of activating microglia markers, glycolytic enzymes, and proangiogenic Igf1. IHC staining shows that these PRAM were spatially located within or around neovascular tufts. These unique types of microglia have the potential to promote retinal angiogenesis, which may have important implications for future treatment of PR and other pathological ocular angiogenesis-related diseases.


Assuntos
Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Transporte Proteico
10.
Circulation ; 146(19): 1444-1460, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073366

RESUMO

BACKGROUND: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of arterial diseases, especially in arterial restenosis after angioplasty or stent placement. VSMCs reprogram their metabolism to meet the increased requirements of lipids, proteins, and nucleotides for their proliferation. De novo purine synthesis is one of critical pathways for nucleotide synthesis. However, its role in proliferation of VSMCs in these arterial diseases has not been defined. METHODS: De novo purine synthesis in proliferative VSMCs was evaluated by liquid chromatography-tandem mass spectrometry. The expression of ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase), the critical bifunctional enzyme in the last 2 steps of the de novo purine synthesis pathway, was assessed in VSMCs of proliferative arterial neointima. Global and VSMC-specific knockout of Atic mice were generated and used for examining the role of ATIC-associated purine metabolism in the formation of arterial neointima and atherosclerotic lesions. RESULTS: In this study, we found that de novo purine synthesis was increased in proliferative VSMCs. Upregulated purine synthesis genes, including ATIC, were observed in the neointima of the injured vessels and atherosclerotic lesions both in mice and humans. Global or specific knockout of Atic in VSMCs inhibited cell proliferation, attenuating the arterial neointima in models of mouse atherosclerosis and arterial restenosis. CONCLUSIONS: These results reveal that de novo purine synthesis plays an important role in VSMC proliferation in arterial disease. These findings suggest that targeting ATIC is a promising therapeutic approach to combat arterial diseases.


Assuntos
Aterosclerose , Hidroximetil e Formil Transferases , Humanos , Camundongos , Animais , Neointima , Purinas , Proliferação de Células , Miócitos de Músculo Liso , Aterosclerose/genética
11.
Br J Pharmacol ; 179(22): 5109-5131, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35830274

RESUMO

BACKGROUND AND PURPOSE: Pathological angiogenesis is a major cause of irreversible blindness in individuals with neovascular age-related macular degeneration (nAMD). Macrophages and microglia (MΦ) contribute to aberrant ocular angiogenesis. However, the role of glucose metabolism of MΦ in nAMD is still undefined. Here, we have investigated the involvement of glycolysis, driven by the kinase/phosphatase PFKFB3, in the development of choroidal neovascularization (CNV). EXPERIMENTAL APPROACH: CNV was induced in mice with laser photocoagulation. Choroid/retinal pigment epithelium (RPE) complexes and MΦ were isolated for analysis by qRT-PCR, western blot, flow cytometry, immunostaining, metabolic measurements and angiogenesis assays. KEY RESULTS: MΦ accumulated within the CNV of murine nAMD models and expressed high levels of glycolysis-related enzymes and M1/M2 polarization markers. This phenotype of hyper-glycolytic and activated MΦ was replicated in bone marrow-derived macrophages stimulated by necrotic RPE in vitro. Myeloid cell-specific knockout of PFKFB3, a key glycolytic activator, attenuated pathological neovascularization in laser-induced CNV, which was associated with decreased expression of MΦ polarization markers and pro-angiogenic factors, along with decreased sprouting of vessels in choroid/RPE complexes. Mechanistically, necrotic RPE increased PFKFB3-driven glycolysis in macrophages, leading to activation of HIF-1α/HIF-2α and NF-κB, and subsequent induction of M1/M2 markers and pro-angiogenic cytokines, finally promoting macrophage reprogramming towards an angiogenic phenotype to facilitate development of CNV. The PFKFB3 inhibitor AZ67 also inhibited activation of HIF-1α/HIF-2α and NF-κB signalling and almost completely prevented laser-induced CNV in mice. CONCLUSIONS AND IMPLICATIONS: Modulation of PFKFB3-mediated macrophage glycolysis and activation is a promising strategy for the treatment of nAMD.


Assuntos
Neovascularização de Coroide , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfofrutoquinase-2 , Monoéster Fosfórico Hidrolases
12.
Int J Gen Med ; 15: 2963-2977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313551

RESUMO

Objective: We aimed to explore the prognostic patterns of ferroptosis-related genes in papillary renal cell carcinoma (PRCC) and investigate the relationship between ferroptosis-related genes and PRCC tumor immune microenvironment. Methods: We obtained the mRNA expression and corresponding clinical data of PRCC from the public tumor cancer genome atlas database (TCGA). The PRCC patients were randomly divided into two cohort, training cohort and verification cohort, respectively. Univariate Cox regression, LASSO Cox regression, multivariate Cox regression analysis were utilized to construct ferroptosis signature for PRCC patients. And then, risk prognostic model was established and verified. The correlation of ferroptosis-related signature with survival and immune microenvironment was systematically analyzed. Results: A 4-genes ferroptosis signature (CDKN1A, MIOX, PSAT1, and RRM2) was constructed. Multivariate Cox regression assay indicates that the risk score of ferroptosis signature was an independent prognostic indicator (HR=1.391, p<0.001). The survival curve shows that the high-risk group has a poorer prognosis than the low-risk group (p<0.001). The risk prognostic model was established based on prognostic factors of clinical-stage, hemoglobin, and risk score. The time-dependent receiver operating characteristic curve (ROC) analysis proves the predictive capacity of the ferroptosis signature, the 3 years area under the curve (AUC) is 0.890, and the 5 years AUC is 0.733. Further analysis suggested that cell cycle, pentose phosphate pathway, P53 signaling pathway were significantly enriched in the high-risk group. The significantly different fractions of dendritic cells resting, macrophage cells, and T cells follicular helper were observed in risk groups. Conclusion: This study implicates a ferroptosis signature which has a good predict capacity of the prognosis in PRCC patients. Ferroptosis-related genes may have a key role in the process of anti-tumor and serve as therapeutic targets for PRCC.

13.
Cardiovasc Res ; 118(15): 3097-3111, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34940829

RESUMO

AIMS: Inhibitors of the anti-phagocytic CD47-SIRPα immune checkpoint are currently in clinical development for a variety of haematological and solid tumours. Application of immune checkpoint inhibitors to the cardiovascular field is limited by the lack of preclinical studies using genetic models of CD47 and SIRPα inhibition. In this study, we comprehensively analysed the effects of global and cell-specific SIRPα and CD47 deletion on atherosclerosis development. METHODS AND RESULTS: Here, we show that both SIRPα and CD47 expression are increased in human atherosclerotic arteries and primarily co-localize to CD68+ areas in the plaque region. Hypercholesterolaemic mice homozygous for a Sirpa mutant lacking the signalling cytoplasmic region (Sirpamut/mut) and myeloid cell-specific Sirpa-knockout mice are protected from atherosclerosis. Further, global Cd47-/- mice are protected from atherosclerosis but myeloid cell-specific deletion of Cd47 increased atherosclerosis development. Using a combination of techniques, we show that loss of SIRPα signalling in macrophages stimulates efferocytosis, reduces cholesterol accumulation, promotes lipid efflux, and attenuates oxidized LDL-induced inflammation in vitro and induces M2 macrophage phenotype and inhibits necrotic core formation in the arterial wall in vivo. Conversely, loss of myeloid cell CD47 inhibited efferocytosis, impaired cholesterol efflux, augmented cellular inflammation, stimulated M1 polarization, and failed to decrease necrotic core area in atherosclerotic vessels. Finally, comprehensive blood cell analysis demonstrated lower haemoglobin and erythrocyte levels in Cd47-/- mice compared with wild-type and Sirpamut/mut mice. CONCLUSION: Taken together, these findings identify SIRPα as a potential target in atherosclerosis and suggest the importance of cell-specific CD47 inhibition as a future therapeutic strategy.


Assuntos
Aterosclerose , Células Mieloides , Animais , Humanos , Camundongos , Inflamação
14.
Br J Pharmacol ; 179(8): 1661-1678, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34796475

RESUMO

BACKGROUND AND PURPOSE: Excess nutrient-induced endothelial cell inflammation is a hallmark of high fat diet (HFD)-induced metabolic syndrome. Pharmacological activation of the protein kinase AMP-activated α1 (PRKAA1) also known as AMPKα1, shows its beneficial effects in many studies of cardiometabolic disorders. However, AMPKα1, as a major cellular sensor of energy and nutrients in endothelial cells, has not been studied for its physiological role in excess nutrient-induced endothelial cell (EC) inflammation. EXPERIMENTAL APPROACH: Wild-type and EC-specific Prkaa1 knockout mice were fed with an HFD. Body weight, fat mass composition, glucose, and lipid levels were monitored regularly. Insulin sensitivity was analysed systemically and in major metabolic organs/tissues. Inflammation status in metabolic organs/tissues were examined with quantitative RT-PCR and flow cytometry. Additionally, metabolic status, inflammation severity, and signalling in cultured ECs were assayed with multiple approaches at the molecular level. KEY RESULTS: EC Prkaa1 deficiency unexpectedly alleviated HFD-induced metabolic syndromes including decreased body weight and fat mass, enhanced glucose clearance and insulin sensitivity, and relieved adipose inflammation and hepatic steatosis. Mechanistically, PRKAA1 knockdown in cultured ECs reduced endothelial glycolysis and fatty acid oxidation, decreased levels of acetyl-CoA and suppressed transcription of inflammatory molecules mediated by ATP citrate lyase and histone acetyltransferase p300. CONCLUSIONS AND IMPLICATIONS: This unexpected pro-inflammatory effect of endothelial AMPKα1/PRKAA1 in a metabolic context provides additional insight in AMPKα1/PRKAA1 activities. An in-depth study and thoughtful consideration should be applied when AMPKα1/PRKAA1 is used as a therapeutic target in the treatment of metabolic syndrome.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Front Cardiovasc Med ; 8: 745810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660743

RESUMO

Sepsis, a pathology resulting from excessive inflammatory response that leads to multiple organ failure, is a major cause of mortality in intensive care units. Macrophages play an important role in the pathophysiology of sepsis. Accumulating evidence has suggested an upregulated rate of aerobic glycolysis as a key common feature of activated proinflammatory macrophages. Here, we identified a crucial role of myeloid 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), a glycolytic activator in lipopolysaccharide (LPS)-induced endotoxemia in mice. Pfkfb3 expression is substantially increased in bone marrow derived macrophages (BMDMs) treated with LPS in vitro and in lung macrophages of mice challenged with LPS in vivo. Myeloid-specific knockout of Pfkfb3 in mice protects against LPS-induced lung edema, cardiac dysfunction and hypotension, which were associated with decreased expression of interleukin 1 beta (Il1b), interleukin 6 (Il6) and nitric oxide synthase 2 (Nos2), as well as reduced infiltration of neutrophils and macrophages in lung tissue. Pfkfb3 ablation in cultured macrophages attenuated LPS-induced glycolytic flux, resulting in a decrease in proinflammatory gene expression. Mechanistically, Pfkfb3 ablation or inhibition with a Pfkfb3 inhibitor AZ26 suppresses LPS-induced proinflammatory gene expression via the NF-κB signaling pathway. In summary, our study reveals the critical role of Pfkfb3 in LPS-induced sepsis via reprogramming macrophage metabolism and regulating proinflammatory gene expression. Therefore, PFKFB3 is a potential target for the prevention and treatment of inflammatory diseases such as sepsis.

16.
J Endocrinol ; 250(3): 93-104, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34101614

RESUMO

Overnutrition-induced endothelial inflammation plays a crucial role in high-fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficientmice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


Assuntos
Células Endoteliais/metabolismo , Resistência à Insulina/genética , Fosfofrutoquinase-2/genética , Animais , Células Cultivadas , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfofrutoquinase-2/metabolismo , Estresse Fisiológico/genética
17.
Br J Pharmacol ; 178(5): 1055-1072, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300142

RESUMO

BACKGROUND AND PURPOSE: Macrophage infiltration into the lungs is a characteristic of pulmonary hypertension (PH). Glycolysis is the main metabolic pathway for macrophage activation. However, the effect of macrophage glycolysis on the development of PH remains unknown. We investigated the effect of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKBF3), a critical enzyme of macrophage glycolysis, on PH development. EXPERIMENTAL APPROACH: Lung tissues from PH patients were examined by immunostaining with macrophage markers. PH was induced in Wistar rats with SU5416/hypoxia and in mice with hypoxia. Lungs and macrophages were isolated for analysis by RT-PCR, western blot, flow cytometry, and immunostaining. KEY RESULTS: Expression of glycolytic molecules was increased in circulating peripheral blood mononuclear cells (PBMCs) and lung macrophages of PH patients. These results were also found in lung macrophages of SU5416/hypoxia (Su/Hx)-induced PH rats and hypoxia-induced PH mice. PH was ameliorated in myeloid-specific Pfkfb3-deficient mice (Pfkfb3ΔMϕ ) or mice treated with the PFKFB3 inhibitor 3PO, compared with their controls. Alveolar macrophages of PH Pfkfb3ΔMϕ mice produced lower levels of growth factors and pro-inflammatory cytokines than those of control mice. Circulating myeloid cells and lung myeloid cells were much fewer in PH Pfkfb3ΔMϕ mice than controls. Mechanistically, overexpression of Hif1a or Hif2a in bone marrow-derived macrophages (BMDMs) cultured with bone marrow of Pfkfb3ΔMϕ mice restored the decreased expression of pro-inflammatory cytokines and growth factors. CONCLUSIONS AND IMPLICATIONS: Myeloid Pfkfb3 deficiency protects mice from PH, thereby suggesting that myeloid PFKFB3 is one of the important targets in the therapeutic effect of PFKFB3 inhibition in PH treatment.


Assuntos
Hipertensão Pulmonar , Animais , Glicólise , Humanos , Hipóxia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Wistar
18.
Sci Transl Med ; 12(555)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759274

RESUMO

The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis-associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow-derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl-coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.


Assuntos
Células Endoteliais , Glicólise , Animais , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fosfofrutoquinase-2/metabolismo
19.
Microcirculation ; 27(6): e12624, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352607

RESUMO

OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Microvasos/enzimologia , Morfolinas/farmacologia , Pirimidinas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Esquerda/enzimologia , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Diástole/efeitos dos fármacos , Diástole/genética , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Zucker , Vasodilatação/genética , Disfunção Ventricular Esquerda/genética
20.
Front Cell Dev Biol ; 8: 611354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511118

RESUMO

Myeloid cells, including monocytes/macrophages, primarily rely on glucose and lipid metabolism to provide the energy and metabolites needed for their functions and survival. AMP-activated protein kinase (AMPK, its gene is PRKA for human, Prka for rodent) is a key metabolic sensor that regulates many metabolic pathways. We studied recruitment and viability of Prkaa1-deficient myeloid cells in mice and the phenotype of these mice in the context of cardio-metabolic diseases. We found that the deficiency of Prkaa1 in myeloid cells downregulated genes for glucose and lipid metabolism, compromised glucose and lipid metabolism of macrophages, and suppressed their recruitment to adipose, liver and arterial vessel walls. The viability of macrophages in the above tissues/organs was also decreased. These cellular alterations resulted in decreases in body weight, insulin resistance, and lipid accumulation in liver of mice fed with a high fat diet, and reduced the size of atherosclerotic lesions of mice fed with a Western diet. Our results indicate that AMPKα1/PRKAA1-regulated metabolism supports monocyte recruitment and macrophage viability, contributing to the development of diet-induced metabolic disorders including diabetes and atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA