Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Pharmacol ; 6: 191, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441648

RESUMO

Incorporating phenotypic screening as a key strategy enhances predictivity and translatability of drug discovery efforts. Cellular imaging serves as a "phenotypic anchor" to identify important toxicologic pathology that encompasses an array of underlying mechanisms, thus provides an effective means to reduce drug development failures due to insufficient safety. This mini-review highlights the latest advances in hepatotoxicity, cardiotoxicity, and genetic toxicity tests that utilized cellular imaging as a screening strategy, and recommends path forward for further improvement.

2.
MAbs ; 4(6): 710-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23007574

RESUMO

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Processos de Crescimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/imunologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Nus , Morfogênese/efeitos dos fármacos , Células NIH 3T3 , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genética , Transgenes/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Methods Mol Biol ; 795: 83-107, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21960217

RESUMO

Kinases are members of a major protein family targeted for drug discovery and development. Given the ubiquitous nature of many kinases as well as the broad range of pathways controlled by these enzymes, early safety assessments of small molecule inhibitors of kinases are crucial in identifying new molecules with sufficient therapeutic window for clinical development. Failure or attrition of drug candidates in late-stage pipelines due to hepatotoxicity is a significant challenge in the drug development field. Herein we provide detailed methods for the hepatocyte imaging assay technology (HIAT) and the bile flux imaging assay technology (BIAT) to evaluate drug-induced liver injury (DILI) potentials for drug candidates. Optimized culturing methods for primary human hepatocytes, both freshly isolated and prequalified cryopreserved cells, are also presented. The applications of these high-content cellular imaging technologies in the evaluation of p38 and Her2 kinase inhibitors are highlighted to illustrate the usefulness of the research methodology in a compound screening as well as mechanistic investigative setting.


Assuntos
Bile/metabolismo , Inibidores Enzimáticos/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Imagem Molecular/métodos , Fosfotransferases/antagonistas & inibidores , Testes de Toxicidade/métodos , Bioensaio/métodos , Células Cultivadas , Colágeno , Criopreservação , Combinação de Medicamentos , Humanos , Processamento de Imagem Assistida por Computador , Laminina , Microscopia de Fluorescência , Proteoglicanas , Coloração e Rotulagem
4.
Drug Metab Dispos ; 38(12): 2302-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20843939

RESUMO

Drug-induced liver injury (DILI) is one of the most important reasons for drug development failure at both preapproval and postapproval stages. There has been increased interest in developing predictive in vivo, in vitro, and in silico models to identify compounds that cause idiosyncratic hepatotoxicity. In the current study, we applied machine learning, a Bayesian modeling method with extended connectivity fingerprints and other interpretable descriptors. The model that was developed and internally validated (using a training set of 295 compounds) was then applied to a large test set relative to the training set (237 compounds) for external validation. The resulting concordance of 60%, sensitivity of 56%, and specificity of 67% were comparable to results for internal validation. The Bayesian model with extended connectivity functional class fingerprints of maximum diameter 6 (ECFC_6) and interpretable descriptors suggested several substructures that are chemically reactive and may also be important for DILI-causing compounds, e.g., ketones, diols, and α-methyl styrene type structures. Using Smiles Arbitrary Target Specification (SMARTS) filters published by several pharmaceutical companies, we evaluated whether such reactive substructures could be readily detected by any of the published filters. It was apparent that the most stringent filters used in this study, such as the Abbott alerts, which captures thiol traps and other compounds, may be of use in identifying DILI-causing compounds (sensitivity 67%). A significant outcome of the present study is that we provide predictions for many compounds that cause DILI by using the knowledge we have available from previous studies. These computational models may represent cost-effective selection criteria before in vitro or in vivo experimental studies.


Assuntos
Teorema de Bayes , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Ligantes
6.
Chem Biol Interact ; 182(1): 45-51, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19560444

RESUMO

The existence of a porphyrin uptake transporter in hepatocytes has been hypothesized in recent years, but to date it has not been identified. While the linear tetrapyrrole bilirubin has been shown to be a substrate for the organic anion transporting polypeptide 1B1 (OATP1B1), similar studies have not been conducted for the cyclic tetrapyrroles (porphyrins). The aim of this study was to determine the structural features of linear and cyclic tetrapyroles necessary for interaction with OATP1B1. The interaction was quantified using HEK cells stably expressing OATP1B1 and measuring the inhibition of OATP1B1-mediated uptake of estradiol 17beta-d-glucuronide in the presence or absence of various linear and cyclic tetrapyrroles. Ditaurine-conjugated bilirubin was the most potent inhibitor of uptake, with an IC50 of 5 nM, while the substitution of the taurine side chains with methyl ester eliminated the inhibition of estradiol 17beta-d-glucuronide uptake. Hematoporphyrin, a cyclic tetrapyrrole with carboxyalcohol side chains at positions C-3 and C-8 and carboxyethyl side chains at positions 13 and 17 had an IC50 of 60 nM, while porphyrins lacking charged side chains such as etioporphyrin I and phthalocyanine did not inhibit OATP1B1. Chlorin e6 and hematoporphyrin were shown to be competitive inhibitors of OATP1B1-mediated uptake of bromosulfophthalein with Kis of 5.8+/-0.3 and 1.6+/-0.3 microM, respectively. While these studies do not provide direct evidence, they do support the assumption that tetrapyrroles are transported by OATP1B1. Additionally, these findings offer a possible explanation for the clinical observation that patients suffering from certain porphyrietic diseases have a reduced ability to excrete organic anions.


Assuntos
Estradiol/análogos & derivados , Transportadores de Ânions Orgânicos/metabolismo , Porfirinas/farmacocinética , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , Linhagem Celular , Estradiol/metabolismo , Estradiol/farmacocinética , Humanos , Concentração Inibidora 50 , Transportador 1 de Ânion Orgânico Específico do Fígado , Modelos Moleculares , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/biossíntese , Transportadores de Ânions Orgânicos/genética , Porfirinas/metabolismo , Sulfobromoftaleína/metabolismo , Transfecção
7.
Toxicol Appl Pharmacol ; 237(3): 317-30, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19362101

RESUMO

Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFN gamma, IL-1 alpha, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1 alpha, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Mediadores da Inflamação/toxicidade , Animais , Linhagem Celular Tumoral , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/classificação , Citocinas/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Hepatócitos/metabolismo , Humanos , Mediadores da Inflamação/classificação , Mediadores da Inflamação/farmacocinética , Masculino , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/metabolismo , Ratos , Ratos Endogâmicos F344
8.
Toxicol Sci ; 108(2): 492-500, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223659

RESUMO

CP-724,714, a potent and selective orally active HER2 tyrosine kinase inhibitor, was discontinued from clinical development due to unexpected hepatotoxicity in cancer patients. Based on the clinical manifestation of the toxicity, CP-724,714 likely exerted its hepatotoxicity via both hepatocellular injury and hepatobiliary cholestatic mechanisms. The direct cytotoxic effect, hepatobiliary disposition of CP-724,714, and its inhibition of active canalicular transport of bile constituents were evaluated in established human hepatocyte models and in vitro transporter systems. CP-724,714 exhibited direct cytotoxicity using human hepatocyte imaging assay technology with mitochondria identified as a candidate organelle for its off-target toxicity. Additionally, CP-724,714 was rapidly taken up into human hepatocytes, partially via an active transport process, with an uptake clearance approximately fourfold higher than efflux clearance. The major human hepatic uptake transporter, OATP1B1, and efflux transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein, were involved in hepatobiliary clearance of CP-724,714. Furthermore, CP-724,714 displayed a concentration-dependent inhibition of cholyl-lysyl fluorescein and taurocholate (TC) efflux into canaliculi in cryopreserved and fresh cultured human hepatocytes, respectively. Likewise, CP-724,714 inhibited TC transport in membrane vesicles expressing human bile salt export pump with an IC(50) of 16 microM. Finally, CP-724,714 inhibited the major efflux transporter in bile canaliculi, MDR1, with an IC(50) of approximately 28 microM. These results suggest that inhibition of hepatic efflux transporters contributed to hepatic accumulation of drug and bile constituents leading to hepatocellular injury and hepatobiliary cholestasis. This study provides likely explanations for clinically observed adverse liver effects of CP-724,714.


Assuntos
Proteínas de Transporte/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Fígado/metabolismo , Quinazolinas/farmacocinética , Quinazolinas/toxicidade , Receptor ErbB-2/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Cálcio/metabolismo , Células Cultivadas , Fluoresceínas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo
9.
Toxicol Sci ; 105(1): 97-105, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18524759

RESUMO

Drug-induced liver injury (DILI) is the most common adverse event causing drug nonapprovals and drug withdrawals. Using drugs as test agents and measuring a panel of cellular phenotypes that are directly linked to key mechanisms of hepatotoxicity, we have developed an in vitro testing strategy that is predictive of many clinical outcomes of DILI. Mitochondrial damage, oxidative stress, and intracellular glutathione, all measured by high content cellular imaging in primary human hepatocyte cultures, are the three most important features contributing to the hepatotoxicity prediction. When applied to over 300 drugs and chemicals including many that caused rare and idiosyncratic liver toxicity in humans, our testing strategy has a true-positive rate of 50-60% and an exceptionally low false-positive rate of 0-5%. These in vitro predictions can augment the performance of the combined traditional preclinical animal tests by identifying idiosyncratic human hepatotoxicants such as nimesulide, telithromycin, nefazodone, troglitazone, tetracycline, sulindac, zileuton, labetalol, diclofenac, chlorzoxazone, dantrolene, and many others. Our findings provide insight to key DILI mechanisms, and suggest a new approach in hepatotoxicity testing of pharmaceuticals.


Assuntos
Hepatócitos/efeitos dos fármacos , Células Cultivadas , Bases de Dados como Assunto , Reações Falso-Positivas , Hepatócitos/patologia , Humanos , Mitocôndrias Hepáticas/fisiologia , Preparações Farmacêuticas/classificação , Farmacocinética , Curva ROC
10.
Toxicol Sci ; 103(2): 335-45, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18344530

RESUMO

Mitochondrial toxicity is increasingly implicated in a host of drug-induced organ toxicities, including hepatotoxicity. Nefazodone was withdrawn from the U.S. market in 2004 due to hepatotoxicity. Accordingly, we evaluated nefazodone, another triazolopyridine trazodone, plus the azaspirodecanedione buspirone, for cytotoxicity and effects on mitochondrial function. In accord with its clinical disposition, nefazodone was the most toxic compound of the three, trazodone had relatively modest effects, whereas buspirone showed the least toxicity. Nefazodone profoundly inhibited mitochondrial respiration in isolated rat liver mitochondria and in intact HepG2 cells where this was accompanied by simultaneous acceleration of glycolysis. Using immunocaptured oxidative phosphorylation (OXPHOS) complexes, we identified Complex 1, and to a lesser amount Complex IV, as the targets of nefazodone toxicity. No inhibition was found for trazodone, and buspirone showed 3.4-fold less inhibition of OXPHOS Complex 1 than nefazodone. In human hepatocytes that express cytochrome P450, isoform 3A4, after 24 h exposure, nefazodone and trazodone collapsed mitochondrial membrane potential, and imposed oxidative stress, as detected via glutathione depletion, leading to cell death. Our results suggest that the mitochondrial impairment imposed by nefazodone is profound and likely contributes to its hepatotoxicity, especially in patients cotreated with other drugs with mitochondrial liabilities.


Assuntos
Ansiolíticos/toxicidade , Antidepressivos de Segunda Geração/toxicidade , Buspirona/toxicidade , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Trazodona/toxicidade , Triazóis/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Piperazinas , Ratos , Ratos Sprague-Dawley
11.
FEBS Lett ; 582(8): 1276-82, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18282474

RESUMO

The majority of drug-related toxicities are idiosyncratic, with little pathophysiological insight and mechanistic understanding. Pathway toxicology is an emerging field of toxicology in the post-genomic era that studies the molecular interactions between toxicants and biological pathways as a way to bridge this knowledge gap. Using two case studies--acetaminophen and p38 MAPK inhibitors--this review illustrates how a pathway-based perspective has advanced our understanding of compound and target-based toxicities. The advancement of pathway toxicology will be dependent on integrated applications of techniques from basic sciences and a fundamental understanding of the interdependence of multiple biological pathways in living organisms.


Assuntos
Acetaminofen/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Acetaminofen/toxicidade , Animais , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Inibidores de Proteínas Quinases/toxicidade , Pele/enzimologia
12.
Drug Metab Dispos ; 33(4): 537-46, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15616150

RESUMO

The present study examined the interaction of four 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (atorvastatin, lovastatin, and simvastatin in acid and lactone forms, and pravastatin in acid form only) with multidrug resistance gene 1 (MDR1, ABCB1) P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and organic anion-transporting polypeptide 1B1 (OATP1B1, SLCO21A6). P-glycoprotein substrate assays were performed using Madin-Darby canine kidney (MDCK) cells expressing MDR1, and the efflux ratios [the ratio of the ratio of basolateral-to-apical apparent permeability and apical-to-basolateral permeability between MDR1 and MDCK] were 1.87, 2.32/4.46, 2.17/3.17, and 0.93/2.00 for pravastatin, atorvastatin (lactone/acid), lovastatin (lactone/acid), and simvastatin (lactone/acid), respectively, indicating that these compounds are weak or moderate substrates of P-glycoprotein. In the inhibition assays (MDR1, MRP2, Mrp2, and OATP1B1), the IC50 values for efflux transporters (MDR1, MRP2, and Mrp2) were >100 microM for all statins in acid form except lovastatin acid (>33 microM), and the IC50 values were up to 10-fold lower for the corresponding lactone forms. In contrast, the IC50 values for the uptake transporter OATP1B1 were 3- to 7-fold lower for statins in the acid form compared with the corresponding lactone form. These data demonstrate that lactone and acid forms of statins exhibit differential substrate and inhibitor activities toward efflux and uptake transporters. The interconversion between the lactone and acid forms of most statins exists in the body and will potentially influence drug-transporter interactions, and may ultimately contribute to the differences in pharmacokinetic profiles observed between statins.


Assuntos
Estradiol/análogos & derivados , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Atorvastatina , Linhagem Celular , Cães , Estradiol/metabolismo , Fluoresceínas/metabolismo , Ácidos Heptanoicos/química , Ácidos Heptanoicos/farmacocinética , Hidrólise , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Lovastatina/química , Lovastatina/farmacocinética , Proteína 2 Associada à Farmacorresistência Múltipla , Permeabilidade , Pirróis/química , Pirróis/farmacocinética , Sinvastatina/química , Sinvastatina/farmacocinética , Relação Estrutura-Atividade
13.
Chem Biol Interact ; 150(2): 179-87, 2004 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-15535988

RESUMO

OATP1B1 (a.k.a. OATP-C, OATP2, LST-1, or SLC21A6) is a liver-specific organic anion uptake transporter and has been shown to be a higher affinity bilirubin uptake transporter than OATP1B3. Using human embryonic kidney (HEK 293) cells stably transfected with OATP1B1, we have studied the effects of indinavir, saquinavir, cyclosporin A, and rifamycin SV on human OATP1B1 transport function. These drugs are potent inhibitors of OATP1B1 transport activity in vitro. We further provide evidence that the calculated fraction of OATP1B1 inhibited at the clinical exposure level correlated very well with the observed hyperbilirubinemia outcome for these drugs in humans. Our data support the hypothesis that inhibition of OATP1B1 is an important mechanism for drug-induced unconjugated hyperbilirubinemia. Inhibition of OATPs may be an important mechanism in drug-drug and drug-endogenous substance interactions.


Assuntos
Hiperbilirrubinemia/enzimologia , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Fígado/metabolismo , Bilirrubina/metabolismo , Linhagem Celular , Humanos , Hiperbilirrubinemia/induzido quimicamente , Rim , Cinética
14.
Chem Biol Interact ; 150(1): 115-28, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15522265

RESUMO

While drug toxicity (especially hepatotoxicity) is the most frequent reason cited for withdrawal of an approved drug, no simple solution exists to adequately predict such adverse events. Simple cytotoxicity assays in HepG2 cells are relatively insensitive to human hepatotoxic drugs in a retrospective analysis of marketed pharmaceuticals. In comparison, a panel of pre-lethal mechanistic cellular assays hold the promise to deliver a more sensitive approach to detect endpoint-specific drug toxicities. The panel of assays covered by this review includes steatosis, cholestasis, phospholipidosis, reactive intermediates, mitochondria membrane function, oxidative stress, and drug interactions. In addition, the use of metabolically competent cells or the introduction of major human hepatocytes in these in vitro studies allow a more complete picture of potential drug side effect. Since inter-individual therapeutic index (TI) may differ from patient to patient, the rational use of one or more of these cellular assay and targeted in vivo exposure data may allow pharmaceutical scientists to select drug candidates with a higher TI potential in the drug discovery phase.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/patologia , Toxicologia/métodos , Sobrevivência Celular , Interações Medicamentosas , Humanos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia
15.
Curr Top Med Chem ; 3(10): 1125-54, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12769713

RESUMO

Major reasons preventing many early candidates reaching market are the inappropriate ADME (absorption, distribution, metabolism and excretion) properties and drug-induced toxicity. From a commercial perspective, it is desirable that poorly behaved compounds are removed early in the discovery phase rather than during the more costly drug development phases. As a consequence, over the past decade, ADME and toxicity (ADMET) screening studies have been incorporated earlier in the drug discovery phase. The intent of this review is to introduce the desirable attributes of a new chemical entity (NCE) to the medicinal chemist from an ADMET perspective. Fundamental concepts, key tools, reagents and experimental approaches used by the drug metabolism scientist to aid a modern project team in predicting human pharmacokinetics and assessing the "drug-like" molecule are discussed.


Assuntos
Absorção , Desenho de Fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacocinética , Distribuição Tecidual , Animais , Disponibilidade Biológica , Transporte Biológico , Ensaios Clínicos como Assunto , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA