Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882923

RESUMO

Current study aims to investigate the biological function of circular RNA (circRNA, circ_0000337) in cervical cancer (CC). Bioinformatic analyses were used to predict targets for circ_0000337 and miR-155-5p, and analyze the gene expression differences between cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to assess mRNA and protein expressions of circ_0000337, microRNA-155-5p (miR-155-5p) and member RAS oncogene family (RAB3B), respectively. Following the establishment of gain/loss-of-function models, CCK-8 was performed to evaluate cell proliferation. Bioinformatics analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to identify the interaction in circ_0000337, miR-155-5p, and RAB3B. Circ_0000337 and RAB3B were upregulated, while miR-155-5p was downregulated in CC tissues and cell lines. circ_0000337 overexpression promoted cell proliferation, circ_0000337 knock down inhibited cell proliferation by sponging miR-155-5p. RAB3B was a target of miR-155-5p which was positively regulated by circ_0000337. In the collected CC tissues, there was a negative correlation between miR-155-5p and circ_0000337 or RAB3B, and a positive correlation between circ_0000337 and RAB3B. miR-155-5p was positively, while RAB3B was negatively correlated with OS in patients with CC, and they were negatively correlated. In conclusion, circ_0000337 upregulates RAB3B by sponging miR-155-5p to promote CC cell proliferation.

2.
J Obstet Gynaecol ; 42(6): 1759-1768, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35260025

RESUMO

The aim of this study was to identify the effect of hyperglycaemia on placentas of gestational diabetes mellitus (GDM) women with macrosomia and normal pre-pregnancy body mass index (BMI), and uncover the molecular mechanism of hyperglycaemia on trophoblast cells in vitro. GDM women with normal pre-pregnancy BMI were divided into GM group (macrosomia, n = 30) and GN group (normal birth weight, n = 35). The study showed GM group had more adverse pregnancy outcomes and higher levels of gestational weight gain, blood glucose and triglyceride. After adjustment for confounding factors, just the fasting plasma glucose level and HbA1c percentage were related to the incidence of GDM-induced macrosomia with normal pre-pregnancy BMI. Meanwhile, the fasting blood glucose was closely related to the placental weight and placental PCNA expression. Furthermore, the in vitro model for placenta showed that hyperglycaemia significantly promoted trophoblast cell proliferation and activated ERK1/2 phosphorylation. ERK1/2 inhibitor markedly suppressed hyperglycaemia-induced trophoblastic proliferation. The fasting plasma glucose and placenta are closely related with the development of GDM-induced macrosomia with normal pre-pregnancy BMI. The mechanism may be hyperglycaemia promotes trophoblast cell proliferation via ERK1/2 signalling. It provides scientific evidence for optimising outcomes of GDM women with normal pre-pregnancy BMI.IMPACT STATEMENTWhat is already known on this subject? Gestational diabetes mellitus (GDM) is one of the strongest risk factors correlated with macrosomia. The hyperglycaemic intrauterine environment affects not only the foetus but also the placental development and function in humans and experimental rodents. However, placental abnormalities associated with maternal diabetes have been inconsistently reported, possibly because of population differences in pre-pregnancy weight, diabetes types, glycemic control or pregnancy complication, and the molecular mechanism of hyperglycaemia on trophoblast cells in vitro was not clearly stated.What do the results of this study add? This is the first study to identify the effect of hyperglycaemia on placentas of gestational diabetes mellitus (GDM) women with macrosomia and normal pre-pregnancy body mass index (BMI), and uncover the molecular mechanism of hyperglycaemia on trophoblast cells in vitro.What are the implications of these findings for clinical practice and/or further research? Understanding placental changes in the environment of abnormal glucose metabolism which can establish the maternal-placental-foetal interface dysfunction as a potential source of adverse pregnancy outcomes is very necessary. Our study found the fasting plasma glucose and placenta are closely related with the development of GDM-induced macrosomia with normal pre-pregnancy BMI. The mechanism may be hyperglycaemia promotes trophoblast cell proliferation via ERK1/2 signalling. It provides scientific evidence for optimising outcomes of GDM women with normal pre-pregnancy BMI, and could be used for the following studies of relationship between placenta and childhood complications.


Assuntos
Diabetes Gestacional , Hiperglicemia , Peso ao Nascer , Glicemia/metabolismo , Índice de Massa Corporal , Proliferação de Células , Criança , Feminino , Macrossomia Fetal/epidemiologia , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Hiperglicemia/complicações , Placenta/metabolismo , Gravidez , Antígeno Nuclear de Célula em Proliferação/metabolismo , Triglicerídeos , Trofoblastos , Aumento de Peso
3.
Hereditas ; 156: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007650

RESUMO

BACKGROUND: Cervical cancer is a malignancy that's common in female with high incidence and mortality worldwide. MicroRNAs (miRNAs) act a pivotal part in human cancer development. Our aim was to investigate the effect of miR-126 on cervical cancer and its underlying molecular mechanism. RESULTS: Firstly, RT-qPCR assay revealed that the expression of miR-126 was significantly downregulated in cervical cancer tissues and cell lines, compared with that in normal adjacent tissues and normal cervical epithelial cell line (Ect1/E6E7), respectively. Then, ZEB1 was verified as a target of miR-126 by using luciferase reporter assay. Inversely, the expression of ZEB1 was markedly upregulated in tumor tissues, and its mRNA level was negatively regulated by miR-126 expression in SiHa and Hela cells. Moreover, the capability of cell proliferation, migration and invasion was analyzed by CCK-8, wound healing assay and transwell assay, respectively. The results demonstrated that overexpression of miR-126 inhibited SiHa and Hela cell proliferation, migration and invasion, while ZEB1 abolished the inhibition induced by miR-126. Additionally, miR-126 suppressed MMP2 and MMP9 in mRNA and protein levels, as well as inhibited the protein expression of p-JAK2 and p-STAT3 in both SiHa and Hela cells, while ZEB1 rescued miR-126-induced suppression. CONCLUSION: miR-126 functions as a tumor suppressor in cervical cancer cells in vitro, which inhibits the proliferation, migration and invasion by suppressing MMP2, MMP9 expression and inactivating JAK2/STAT3 signaling pathway through targeting ZEB1, suggesting that miR-126 might be a novel potential target for the diagnosis and treatment of patients with cervical cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Neoplasias do Colo do Útero/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Janus Quinase 2/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Onco Targets Ther ; 12: 31-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30588028

RESUMO

BACKGROUND: Endometrial carcinoma (EC) is the most common and lethal malignancy worldwide. Syncytin-1 is expressed in multiple types of cancer. However, the expression pattern and potential mechanism of syncytin-1 and its clinical significance in EC remain unclear. MATERIALS AND METHODS: We analyzed 130 primary EC specimens from Binzhou Medical University to investigate the clinical role of syncytin-1 in EC by using different advanced pathological stages of EC tissues. Kaplan-Meier analysis was used to measure the overall survival of EC patients. Syncytin-1 expression was analyzed by Western blot assays in HECCL-1 and RL-95-2 cells. Cell proliferation, cycle, migration, and invasion abilities were detected by cell counting kit-8, flow cytometry, and transwell assays. AKT and epithelial-mesenchymal transition (EMT)-related genes were assessed by Western blot assays in HECCL-1 and RL-95-2 cells. RESULTS: Syncytin-1 was upregulated in EC tissues and cells and was related to clinical stages, expression of ER, Ki-67, and overall survival of EC. Functional research revealed that overexpression of syncytin-1 can promote cell proliferation, cell cycle progression, and the migration and invasion of EC cells. Suppression of syncytin-1 expression also inhibited cell proliferation and apoptosis in vitro. The expression of syncytin-1 substantially improved the expression levels of EMT-related genes (vimentin, E-cadherin, slug, and ZEB1) but significantly decreased those of epithelial markers (N-cadherin and snail). In addition, we found that syncytin-1 was not correlated with AKT-related genes (total-AKT, p-AKT, and vinculin). CONCLUSION: Our results suggested that syncytin-1 may promote aggressive behavior and can serve as a novel prognostic biomarker for EC. Our study provides new insights into the regulatory mechanism of EMT signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA