Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 133: 106412, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773456

RESUMO

The PI3K/AKT/mTOR signaling pathway is one of the most common abnormal activation pathways in tumor cells, and has associated with multiple functions such as tumor cell growth, proliferation, migration, invasion, and tumor angiogenesis. Here, a series of 3-amino-1H-indazole derivatives were synthesized, and their antiproliferative activities against HT-29, MCF-7, A-549, HepG2 and HGC-27 cells were evaluated. Among them, W24 exhibited the broad-spectrum antiproliferative activity against four cancer cells with IC50 values of 0.43-3.88 µM. Mechanism studies revealed that W24 inhibited proliferation by affecting the DNA synthesis, induced G2/M cell cycle arrest and apoptosis by regulating Cyclin B1, BAD and Bcl-xL, meanwhile induced the change of intracellular ROS and mitochondrial membrane potential in HGC-27 cells. Moreover, W24 inhibited the migration and invasion of HGC-27 cells by decreasing EMT pathway related proteins and reducing the mRNA expression levels of Snail, Slug and HIF-1α. Furthermore, W24 displayed low tissue toxicity profile and good pharmacokinetic properties in vivo. Therefore, 3-amino-1H-indazole derivatives might serve as a new scaffold for the development of PI3K/AKT/mTOR inhibitor and anti-gastric cancer reagent.


Assuntos
Indazóis , Neoplasias , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Indazóis/química , Indazóis/farmacologia
2.
Bioorg Med Chem ; 78: 117152, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36599264

RESUMO

The bromodomain-containing protein 4 (BRD4) has gained growing interest as an effective drug target for the treatment of hepatocellular carcinoma (HCC). Herein, we designed and synthesized a series of quinoxalinone derivatives as BRD4 inhibitors via scaffold hopping. The representative compound X9 showed potent BRD4 inhibitory activity (with IC50 = 82.3 nM), and preferable antiproliferative activity against HepG2 cells (with IC50 = 1.13 ± 0.07 µM), as well as less toxicity against GES-1 cells (with IC50 = 57.24 ± 5.46 µM). Furthermore, compound X9 dose-dependently inhibited colony formation and blocked the migration of HepG2 cells by down-regulating the expression of Snail and MMP-9 while up-regulating the E-cadherin and Occludin. Besides, compound X9 efficiently down-regulated the expression of c-Myc in HepG2 cells, induced apoptosis, and arrested at G0/G1 phase. In total, quinoxalinone was a potential core as BRD4 inhibitor and compound X9 might be effective for liver cancer therapy.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Nucleares/metabolismo , Relação Estrutura-Atividade , Carcinoma Hepatocelular/tratamento farmacológico , Desenho de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Fatores de Transcrição , Proliferação de Células , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Ciclo Celular/metabolismo
3.
Eur J Med Chem ; 244: 114821, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242985

RESUMO

VEGFR-2 is an attractive therapeutic target for antitumor drug research by blocking tumor angiogenesis and PROTAC provides a new technology for targeted protein knockout. Herein, a library of novel VEGFR-2-PROTAC degraders were rationally designed and synthesized based on the Lys residue region on the surface of VEGFR-2 protein using protein structure-based drug design strategy. Among them, P7 exhibited preferable antitumor activity against HGC-27 cells and less toxic to human normal HUVEC, HEK293T and GES-1 cells in vitro, as well as the potent degradation activity of VEGFR-2 protein in HGC-27 cells (DC50: 0.084 ± 0.04 µM, Dmax: 73.7%) and HUVEC cells (DC50: 0.51 ± 0.10 µM, Dmax: 76.6%). Additionally, P7 degraded VEGFR-2 protein by the formation of ternary complex and the ubiquitin proteasome pathway in HGC-27 cells. Furthermore, P7 shortened the half-life of VEGFR-2 protein synthesis and had no inhibitory effect on the expression of VEGFR-2 mRNA in HGC-27 cells. Moreover, P7 inhibited the colony formation, migration and invasion of HGC-27 cells in a time- and dose-dependent manner, and meanwhile induced G2/M phase cycle arrest and apoptosis. All the results demonstrated that P7 could be as a promising VEGFR-2-PROTAC degrader for gastric cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Lisina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Células HEK293 , Proteólise , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteína Supressora de Tumor Von Hippel-Lindau
4.
Bioorg Chem ; 128: 106117, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063752

RESUMO

The bromodomain and extra-terminal (BET) bromodomains, particularly BRD4, have been identified as promising therapeutic targets in the treatment of many human disorders such as cancer. Coumarin is a highly privileged moiety for the development of novel anticancer drugs which has been identified in clinical trials for the treatment of various cancers. Herein, we modified BRD4i ABBV-075 with a coumarin ring and synthesized a novel series of coumarin derivatives as BRD4 inhibitors. Among them, the representative compound 27d showed excellent BRD4 inhibitory activities with an IC50 value of 99 nM in the TR-FRET assay. Compared with ABBV-075, compound 27d displayed a favorable cell proliferation inhibitory activity in solid tumors, such as MCF-7, HGC-27 and HepG-2. Further mechanism investigation illustrated that 27d-treatment resulted in G0/G1 phase arrest and promoted apoptosis of MCF-7 cells. Compound 27d also blocked colony formation in a concentration-dependent manner in McF-7 cell lines. As the downstream-protein of BRD4, the expression of c-Myc was decreased in a dose-dependent manner after the treatment of compound 27d. Moreover, compound 27d also exhibited good in vivo and in vitro metabolic stability. All the findings meaningfully make it as a promising lead compound for further drug development.


Assuntos
Antineoplásicos , Proteínas Nucleares , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cumarínicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Fatores de Transcrição
5.
Eur J Med Chem ; 213: 113192, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493829

RESUMO

Vascular endothelial growth factor-2 (VEGFR-2) plays a pivotal role in tumor angiogenesis. Herein, a library of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol -1-yl)acetamide derivatives were designed and synthesized as VEGFR-2 inhibitors based on scaffold hopping strategy. These compounds exhibited the excellent inhibitory in both VEGFR-2 and tumor cells proliferation. Especially, compound W13 possessed potent VEGFR-2 inhibition with IC50 = 1.6 nM and anti-proliferation against HGC-27 tumor cells with IC50 = 0.36 ± 0.11 µM, as well as less toxicity against normal GES-1 cells with IC50 = 187.46 ± 10.13 µM. Moreover, W13 obviously inhibited colony formation, migration and invasion of HGC-27 cells by adjusting the expression of MMP-9 and E-cadherin, and induced HGC-27 cells apoptosis by increasing ROS production and regulating the expression of apoptotic proteins. Furthermore, W13 blocked the PI3K-Akt-mTOR signaling pathway in HGC-27 cells. In addition, anti-angiogenesis of W13 was proved by inhibiting tube formation and the expression of p-VEGFR-2 in HUVEC cells. All the results demonstrated that W13 could be developing as a promising anticancer agent for gastric cancer therapy.


Assuntos
Acetamidas/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA