RESUMO
Recurrence risks of cancer patient can change during treatment as a result of treatment-related tumor evolution. However, biomarkers that can monitor these changes are lacking. Here, we investigated whether tracking circulating tumor DNA (ctDNA) dynamics through liquid biopsy can inform real-time recurrence risk. Nasopharyngeal carcinoma (NPC) provides an ideal model where cell-free Epstein-Barr virus (EBV) DNA (cfEBV DNA), a ctDNA, can be sensitively detected. We conducted the EP-SEASON study (NCT03855020) and prospectively recruited 1,000 NPC patients undergoing per-protocol cfEBV DNA assessments at 11 time points and receiving sequential chemo-radiotherapy. Longitudinal cfEBV DNA displayed distinct patterns during neoadjuvant chemotherapy and radiotherapy. Despite the prognostic significance of cfEBV DNA at each time point, real-time recurrence risks changed in sync with cfEBV DNA dynamics. Furthermore, we identified phenotypes of whole-course ctDNA changing dynamics associated with different survival outcomes. In conclusion, tracking longitudinal on-treatment ctDNA can forecast real-time recurrence risk, facilitating risk-adapted, individualized patient management.
Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Biópsia Líquida/métodos , Estudos Longitudinais , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/sangue , Prognóstico , Estudos ProspectivosRESUMO
Traditional Chinese medicine proteins(TCMPs) not only have nutritional values and biological activities but also serve as key enzymes in the synthesis of pharmacodynamic components in traditional Chinese medicines. They play a role in the synthesis of pharmacodynamic components by regulating biosynthesis and selective synthesis pathways and controlling drug quality and stability. The recent years have witnessed great progress in the research on the structures and functions of proteins using various methods and technologies. However, the research on the structures and functions of TCMPs lags behind. Therefore, it is urgent to study the structures and functions of TCMPs using modern means to promote the discovery of innovative drugs based on TCMPs and clarify the synthesis pathways of pharmacodynamic components. This study introduces the latest techniques for studying protein structures and functions, including spectroscopy, mass spectrometry, nuclear magnetic resonance, X-ray crystal diffraction, microscopy, and structure prediction. Furthermore, this paper introduces the methods for protein functional studies, including liquid chromatography-mass spectrometry, co-immunoprecipitation, yeast two-hybrid, and pull-down assay. By systematically reviewing these techniques and methods, this paper provides technical references for the structural identification and functional studies of TCMPs, with the aim of promoting the in-depth exploration of the structures and functions of TCMPs.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Proteínas/química , Proteínas/metabolismo , Humanos , Espectrometria de MassasRESUMO
Background: Previous studies have reported that gut microbiota is associated with an increased risk of chronic kidney disease (CKD) progression. However, whether gut microbiota has a causal effect on the development of CKD has not been revealed. Thus, we aimed to analyze the potential causal effect of gut microbiota on the risk of CKD using mendelian randomization (MR) study. Materials and Methods: Independent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa (N = 18340) were identified as instrumental variables. Two-sample MR was performed to evaluate the causal effect of gut microbiota on CKD (N = 480698), including inverse-variance-weighted (IVW) method, weighted median method, MR-Egger, mode-based estimation and MR-PRESSO. The robustness of the estimation was tested by a series of sensitivity analyses including Cochran's Q test, MR-Egger intercept analysis, leave-one-out analysis and funnel plot. Statistical powers were also calculated. Results: The genetically predicted higher abundance of order Desulfovibrionales was causally associated with an increased risk of CKD (odds ratio = 1.15, 95% confidence interval: 1.05-1.26; p = 0.0026). Besides, we also detected potential causalities between nine other taxa (Eubacterium eligens group, Desulfovibrionaceae, Ruminococcaceae UCG-002, Deltaproteobacteria, Lachnospiraceae UCG-010, Senegalimassilia, Peptostreptococcaceae, Alcaligenaceae and Ruminococcus torques group) and CKD (p < 0.05). No heterogeneity or pleiotropy was detected for significant estimates. Conclusion: We found that Desulfovibrionales and nine other taxa are associated with CKD, thus confirming that gut microbiota plays an important role in the pathogenesis of CKD. Our work also provides new potential indicators and targets for screening and prevention of CKD.
Assuntos
Actinobacteria , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Causalidade , Clostridiales , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/genética , Estudo de Associação Genômica AmplaRESUMO
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.