Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Aging (Albany NY) ; 16(1): 66-88, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38170222

RESUMO

OBJECTIVE: The roles of MTFR1 in the drug resistance of lung adenocarcinoma (LAC) to cisplatin remain unexplored. In this study, the expression, clinical values and mechanisms of MTFR1 were explored, and the relationship between MTFR1 expression and immune microenvironment was investigated in LAC using bioinformatics analysis, cell experiments, and meta-analysis. METHODS: MTFR1 expression and clinical values, and the relationship between MTFR1 expression and immunity were explored, through bioinformatics analysis. The effects of MTFR1 on the growth, migration and cisplatin sensitivity of LAC cells were identified using cell counting kit-8, wound healing and Transwell experiments. Additionally, the mechanisms of drug resistance of LAC cells involving MTFR1 were investigated using western blotting. RESULTS: MTFR1 was elevated in LAC tissues. MTFR1 overexpression was associated with sex, age, primary therapy outcome, smoking, T stage, unfavourable prognosis and diagnostic value and considered an independent risk factor for an unfavourable prognosis in patients with LAC. MTFR1 co-expressed genes involved in the cell cycle, oocyte meiosis, DNA replication and others. Moreover, interfering with MTFR1 expression inhibited the proliferation, migration and invasion of A549 and A549/DDP cells and promoted cell sensitivity to cisplatin, which was related to the inhibition of p-AKT, p-P38 and p-ERK protein expression. MTFR1 overexpression was associated with stromal, immune and estimate scores along with natural killer cells, pDC, iDC and others in LAC. CONCLUSIONS: MTFR1 overexpression was related to the unfavourable prognosis, diagnostic value and immunity in LAC. MTFR1 also participated in cell growth and migration and promoted the drug resistance of LAC cells to cisplatin via the p-AKT and p-ERK/P38 signalling pathways.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Microambiente Tumoral/genética
2.
Aging (Albany NY) ; 16(2): 1605-1619, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38244585

RESUMO

BACKGROUND: Overexpression of solute carrier family 7 member 8 (SLC7A8) has been shown to relate to the survival time and tumor progression in cancer patients. However, the role of SLC7A8 in lung adenocarcinoma (LUAD) is still obscure. METHOD: The relationships between SLC7A8 expression in LUAD tissues and clinical values as well as immune infiltration were explored through bioinformatics. The functions and pathways of SLC7A8 in LUAD were investigated using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, Western blotting, and other methods. RESULTS: We found that the expression of SLC7A8 was decreased significantly in LUAD tissues compared with normal tissues, which was related to the dismal survival time and disease progression. Moreover, it carried diagnostic value in LUAD and was a risk factor for dismal prognosis. Receiver operating characteristic curve analysis indicated that the expression level of SLC7A8 carried significant diagnostic value in LUAD. Overexpression of SLC7A8 inhibited the proliferation, invasion, and migration of LUAD cells, likely through a mechanism involving the cell cycle. SLC7A8 expression in LUAD was significantly correlated with the infiltration of immune cells, especially B cells, interstitial dendritic cells, mast cells, CD56 bright cells, natural killer cells, plasmacytoid dendritic cells, T follicular helper cells, T helper 2 and 17 cells, and immune factors. CONCLUSION: The downregulation of SLC7A8 was related to a dismal prognosis and immune cell infiltration in LUAD. Increasing the expression of SLC7A8 inhibited the growth and migration of LUAD cells, thereby improving the prognosis of patients.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Prognóstico , Progressão da Doença , Neoplasias Pulmonares/genética , Sistema y+ de Transporte de Aminoácidos , Cadeias Leves da Proteína-1 Reguladora de Fusão
3.
Dalton Trans ; 53(6): 2565-2574, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38221875

RESUMO

The development of urea oxidation reaction (UOR) and oxygen evolution reaction (OER) bifunctional electrocatalysts has dual significance in promoting hydrogen energy production and urea-rich wastewater treatment. Herein, a carboxylated multi-walled carbon nanotube (MWCNT-COOH)-ferrocene carboxylic acid (Fc-COOH) modulated NiMOF hybrid material (MWCNT-NiMOF(Fc)) has been synthesized for dual electrocatalysis of the UOR and OER. The material characterization results indicated that MWCNT-COOH and Fc-COOH were integrated into the framework structure of the NiMOF. The direct interaction between the NiMOF and MWCNT/Fc facilitated electron transfer in the hybrid material and led to lattice strain, which improved the charge transfer kinetics, promoted the exposure of more unsaturated Ni sites, and increased the electrochemically active surface area. These factors together enhanced the electrocatalytic activity of MWCNT-NiMOF(Fc) towards the UOR and OER. Using a glassy carbon electrode as the substrate, MWCNT-NiMOF(Fc) exhibited low potential requirements, low Tafel slopes, and high stability. In overall urea and water splitting electrolysis cells, the excellent UOR and OER dual functional catalytic ability and enormous practical application potential of the MWCNT-NiMOF(Fc) modified foam nickel electrode were further demonstrated. On the basis of the above research, the influence of a KOH environment on urea electrolysis was further studied, and the urea electrolysis products were analyzed, promoting a more comprehensive understanding of the catalytic performance of MWCNT-NiMOF(Fc) for urea oxidation. This study provides a new approach for developing high-performance NiMOF-based electrocatalysts for challenging bifunctional UOR/OER applications, and has potential application value in hydrogen production from urea-containing wastewater electrolysis.

4.
Adv Mater ; 36(13): e2310143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134811

RESUMO

Sluggish sulfur redox kinetics and Li-dendrite growth are the main bottlenecks for lithium-sulfur (Li-S) batteries. Separator modification serves as a dual-purpose approach to address both of these challenges. In this study, the Co/MoN composite is rationally designed and applied as the modifier to modulate the electrochemical kinetics on both sides of the sulfur cathode and lithium anode. Benefiting from its adsorption-catalysis function, the decorated separators (Co/MoN@PP) not only effectively inhibit polysulfides (LiPSs) shuttle and accelerate their electrochemical conversion but also boost Li+ flux, realizing uniform Li plating/stripping. The accelerated LiPSs conversion kinetics and excellent sulfur redox reversibility triggered by Co/MoN modified separators are evidenced by performance, in-situ Raman detection and theoretical calculations. The batteries with Co/MoN@PP achieve a high initial discharge capacity of 1570 mAh g-1 at 0.2 C with a low decay rate of 0.39%, uniform Li+ transportation at 1 mA cm-2 over 800 h. Moreover, the areal capacity of 4.62 mAh cm-2 is achieved under high mass loadings of 4.92 mg cm-2. This study provides a feasible strategy for the rational utilization of the synergistic effect of composite with multifunctional microdomains to solve the problems of Li anode and S cathode toward long-cycling Li-S batteries.

5.
Environ Geochem Health ; 45(11): 7775-7789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37432490

RESUMO

Heavy metal pollution in agricultural soil is a threat to people's health and sustainable development. However, there is currently no nationwide health risk assessment in China. In this study, we performed a preliminary assessment of heavy metals in agricultural soils of the Chinese mainland, and found obvious carcinogenic risks (total lifetime carcinogenic risk (TLCR) > 1 × 10-5). A similar spatial distribution pattern was found in soil heavy metal and the mortality of esophagus and stomach cancers. Combining the potential carcinogenic risk assessed by LCR for individual heavy metal with Pearson correlation, Geographical Detector (q statistic > 0.75 for TLCR, p < 0.05), and redundancy analysis (RDA), it was found that long-term exposure and intake route of heavy metals exceeding the maximum safety threshold (Health Canada standard) may induce digestive system (esophagus, stomach, liver, and colorectum) cancers in rural populations. Through Partial Least Squares Path Model (PLS-PM), it was also revealed that the LCR of heavy metals was closely related to the soil environmental background (path coefficients = 0.82), which in turn was affected by factors such as economic development and pollution discharge. The current research results highlight the potential carcinogenic risk to the digestive system associated with low-dose and long-term exposure to heavy metals in agricultural soils, and policymakers should propose countermeasures and solutions according to the local conditions.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Monitoramento Ambiental , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , China/epidemiologia , Carcinógenos , Medição de Risco
6.
Small ; 19(38): e2301985, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226367

RESUMO

Benefiting from the admirable energy density (1086 Wh kg-1 ), overwhelming security, and low environmental impact, rechargeable zinc-air batteries (ZABs) are deemed to be attractive candidates for lithium-ion batteries. The exploration of novel oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts is the key to promoting the development of zinc-air batteries. Transitional metal phosphides (TMPs) especially Fe-based TMPs are deemed to be a rational type of catalyst, however, their catalytic performance still needs to be further improved. Considering Fe (heme) and Cu (copper terminal oxidases) are nature's options for ORR catalysis in many forms of life from bacteria to humans. Herein, a general "in situ etch-adsorption-phosphatization" strategy is designed for the fabrication of hollow FeP/Fe2 P/Cu3 P-N, P codoped carbon (FeP/Cu3 P-NPC) catalyst as the cathode of liquid and flexible ZABs. The liquid ZABs manifest a high peak power density of 158.5 mW cm-2 and outstanding long-term cycling performance (≈1100 cycles at 2 mA cm-2 ). Similarly, the flexible ZABs deliver superior cycling stability of 81 h at 2 mA cm-2 without bending and 26 h with different bending angles.

7.
Small ; 19(29): e2207723, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37046182

RESUMO

Self-powered integrated sensor with high-sensitivity physiological signals detection is indispensable for next-generation wearable electronic devices. Herein, a Ti3 C2 Tx /CNTs-based self-powered resistive sensor with solar cells and in-plane micro-supercapacitors (MSCs) is successfully realized on a flexible styrene-ethylene/butylene-styrene (SEBS) electrospinning film. The prepared Ti3 C2 Tx /CNTs@SEBS/CNTs nanofiber membranes exhibit high electrical conductivity and mechanical flexibility. The laser-assisted fabricated Ti3 C2 Tx /CNTs based-MSCs demonstrate a high areal energy density of 52.89 and 9.56 µWh cm-2 with a corresponding areal power density of 0.2 and 4 mW cm-2 . Additionally, the MSCs exhibit remarkable capacity retention of 90.62% after 10 000 cycles. Furthermore, the Ti3 C2 Tx /CNTs based-sensor exhibits real-time detection capability for human facial micro-expressions and pulse single under physiological conditions. The repeated bending/release tests indicate the long-time cycle stability of the Ti3 C2 Tx /CNTs based-sensor. Owing to the excellent sensing performance, the sensing array was also fabricated. It is believed that this work develops a route for designing a self-powered sensor system with flexible production, high performance, and human-friendly characteristics for wearable electronics.

8.
J Phys Condens Matter ; 35(29)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37059113

RESUMO

It is well known that the traditional two-dimensional electron system (2DES) hosted by the SrTiO3substrate can exhibit diverse electronic states by modifying the capping layer in heterostructures. However, such capping layer engineering is less studied in the SrTiO3-layer-carried 2DES (or bilayer 2DES), which is different from the traditional one on transport properties but more applicable to the thin-film devices. Here, several SrTiO3bilayers are fabricated by growing various crystalline and amorphous oxide capping layers on the epitaxial SrTiO3layers. For the crystalline bilayer 2DES, the monotonical reduction on the interfacial conductance, as well as carrier mobility, is recorded on increasing the lattice mismatch between the capping layers and epitaxial SrTiO3layer. The mobility edge raised by the interfacial disorders is highlighted in the crystalline bilayer 2DES. On the other hand, when increasing the concentration of Al with high oxygen affinity in the capping layer, the amorphous bilayer 2DES becomes more conductive accompanied by the enhanced carrier mobility but almost constant carrier density. This observation cannot be explained by the simple redox-reaction model, and the interfacial charge screening and band bending need to be considered. Moreover, when the capping oxide layers have the same chemical composition but with different forms, the crystalline 2DES with a large lattice mismatch is more insulating than its amorphous counterpart, and vice versa. Our results shed some light on understanding the different dominant role in forming the bilayer 2DES using crystalline and amorphous oxide capping layer, which may be applicable in designing other functional oxide interfaces.

9.
Environ Monit Assess ; 195(4): 463, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907941

RESUMO

High-resolution record of silver (Ag) in lakes is indispensable for examining human impact on its deposition, and for understanding its geochemical cycling in the environment. However, such studies are extremely insufficient. In this study, a piston core (CHY) collected from the Chaohu Lake, east China, was analyzed to examine sedimentary history of Ag. A record of this metal in recent times was further reconstructed. The record displays significant changes. Prior to the 1960s, Ag concentrations stabilized at a relatively low level (0.06 ppm), but they increased rapidly (0.26 ppm) afterward. The average concentration of Ag in the profile is 0.13 ppm, higher than its crustal abundance. Enrichment factor (EF) analysis further reveals that Chaohu Lake was not polluted with Ag until the 1960s, but the pollution level increases rapidly since then, and now shows a moderate pollution. Sedimentary record of Ag closely follows population changes within the watershed, suggesting that human activity is possibly the ultimate driving factor for its distribution. Intensified industrial activities associated with population expansion may release silver to inflow rivers and Chaohu Lake, resulting in its ultimate settling down to the sediments. Sedimentary flux of Ag varies significantly between 42.9 and 392.0 µg/(m2·year), with an average of 236.8 µg/(m2·year). This is so far as we know the first high-resolution record of Ag and its flux in east China, providing new perspective for better understanding the distribution and transport of Ag in lake environment.


Assuntos
Prata , Poluentes Químicos da Água , Humanos , Prata/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Lagos , China , Sedimentos Geológicos
10.
Angew Chem Int Ed Engl ; 62(11): e202216950, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625196

RESUMO

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

11.
Sci Total Environ ; 857(Pt 1): 159249, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220471

RESUMO

Phosphate ion (PO43-) serves as an important nutrient carrier to support the growth of aquatic animals and plants in aquatic systems. However, excess concentrations of PO43- are the key factor responsible for eutrophication, resulting in rapid deterioration of water quality. Therefore, accurate determination of PO43- is of great significance in water quality and security. In this study, flavin mononucleotide (FMN), an intracellular form of vitamin B2, was used as fluorophore. A novel "off-on" fluorescent sensing platform (FMN@Fe3O4) was fabricated for selective and sensitive detection of PO43-, and showed excellent fluorescence response and good selectivity for PO43- detection. With the addition of PO43-, the fluorescence intensity restored is proportional to PO43- concentration in the quantification range of 50 nM-0.75 µM with a limit of detection as low as 20 nM (0.62 µg.L-1, calculated by P element). An adsorption/desorption sensing mechanism via an in-depth analysis of the interfacial interaction between PO43- and FMN@Fe3O4 is proposed. FMN is first adsorbed by its terminal phosphate group on Fe3O4 particles to quench fluorescence. Free PO43- replaces the adsorbed FMN and restores the quenched fluorescence to achieve the aim of PO43- detection. In addition, this sensing system has been successfully validated in real water sample analysis and all reagents involved are nontoxic, environmentally benign, and easily-available. Therefore, this assay has great applicability in water quality monitoring.


Assuntos
Mononucleotídeo de Flavina , Corantes Fluorescentes , Animais , Fosfatos , Análise de Alimentos
12.
Cell Transplant ; 31: 9636897221139734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448598

RESUMO

Recent studies have shown that the use of mesenchymal stem/stromal cells (MSCs) may be a promising strategy for treating spinal cord injury (SCI). This study aimed to explore the effectiveness of human umbilical cord-derived MSCs (hUC-MSCs) with different administration routes and dosages on SCI rats. Following T10-spinal cord contusion in Sprague-Dawley rats (N = 60), three different dosages of hUC-MSCs were intrathecally injected into rats (SCI-ITH) after 24 h. Intravenous injection of hUC-MSCs (SCI-i.v.) and methylprednisolone reagent (SCI-PC) were used as positive controls (N = 10/group). A SCI control group without treatment and a sham operation group were injected with Multiple Electrolyte Injection solution. The locomotor function was assessed by Basso Beattie Bresnahan (BBB) rating score, magnetic resonance imaging (MRI), histopathology, and immunofluorescence. ELISA was conducted to further analyze the nerve injury and inflammation in the rat SCI model. Following SCI, BBB scores were significantly lower in the SCI groups compared with the sham operation group, but all the treated groups showed the recovery of hind-limb motor function, and rats receiving the high-dose intrathecal injection of hUC-MSCs (SCI-ITH-H) showed improved outcomes compared with rats in hUC-MSCs i.v. and positive control groups. Magnetic resonance imaging revealed significant edema and spinal cord lesion in the SCI groups, and significant recovery was observed in the medium and high-dose hUC-MSCs ITH groups. Histopathological staining showed that the necrotic area in spinal cord tissue was significantly reduced in the hUC-MSCs ITH-H group, and the immunofluorescence staining confirmed the neuroprotection effect of hUC-MSCs infused on SCI rats. The increase of inflammatory cytokines was repressed in hUC-MSCs ITH-H group. Our results confirmed that hUC-MSC administered via intrathecal injection has dose-dependent neuroprotection effect in SCI rats.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Fatores Imunológicos
13.
Inorg Chem ; 61(48): 19399-19406, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383555

RESUMO

The epitaxial (K0.49Na0.49Li0.02)(Ta0.2Nb0.8)O3 with 2 wt % MnO2 addition (KNNLT-M) film on the transparent La0.03Ba0.97SnO3-coated LaAlO3 (001) substrate is chosen to investigate how the lattice evolution, as well as the electrical properties, optical bandgap energy, and thermal stability, changes with the growth oxygen pressure [P(O2)]. Compared to the other perovskite oxide films, for example, (La,Ca)MnO3, PbTiO3, and BaTiO3, an anomalous lattice evolution with an increased (decreased) out-of-plane (in-plane) lattice constant was observed in KNNLT-M films as P(O2) increases. Such anomalous lattice evolution can improve the electric properties of KNNLT-M films; for example, the ferroelectricity is significantly optimized and the dielectric constant is enhanced from 451 to 1248 at 1 kHz. The X-ray photoelectron spectra results have demonstrated that high P(O2) can make more K cations to enter the perovskite lattice and the Mn2+/Mn3+ existing in KNNLT can effectively suppress the leakage behavior, thus promoting the electrical nature of KNNLT-M films. The optical measurements show that the KNNLT-M film heterostructures are highly transparent with a maximum transmittance of ∼80%, and both direct and indirect bandgap energies increase with increasing P(O2). Meanwhile, all these KNNLT-M films exhibit good thermal stability with stable ferroelectricity up to the high temperature of at least 125 °C. These results demonstrate that the control of the lattice structure and electrical properties by P(O2) is one of the important prerequisites for the application of KNN-based films.

14.
ACS Appl Mater Interfaces ; 14(47): 53298-53313, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36380725

RESUMO

Two-dimensional transition metal carbides (Ti3C2Tx MXene) have emerged as new candidates for applications in multifunctional devices owing to their outstanding performance. However, these electronic devices are easily disturbed by water, breakage, oxidation during use, and limited energy resources. To solve these problems, herein, inspired by nature, a novel superhydrophobic, healable photothermal deicing and photodetector (SHPP) with a "papillary structure" is successfully fabricated for the first time, by a simple layer-by-layer assembly spraying process with 0D/1D/2D nanomaterials. As a result, the superhydrophobic modified 2D MXene coating (FM coating) on the SHPP sensor exhibits outstanding self-cleaning, long-term durability (>20 days), as well as excellent photothermal deicing performances under near-infrared light. Meanwhile, the unique semiembedded nano-ZnO/1D silver nanowire supports the sensor with desirable photoelectric performance with UV light and a fast response time (∼1 s), and good cycle stability. Moreover, benefiting from the transparent self-healing substrate, the photothermal deicing and photodetector properties can be restored at room temperature. The bioinspired structures and function mechanisms offer SHPP sensors great potential for the utilization of clean light energy, sensing, self-cleaning, anti-icing, and so forth.

15.
Adv Mater ; 34(50): e2204403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208086

RESUMO

Developing a conductive catalyst with high catalytic activity is considered to be an effective strategy for improving cathode kinetics of lithium-sulfur batteries, especially at large current density and with lean electrolytes. Lattice-strain engineering has been a strategy to tune the local structure of catalysts and to help understand the structure-activity relationship between strain and catalyst performance. Here, Co0.9 Zn0.1 Te2 @NC is constructed after zinc atoms are uniformly doped into the CoTe2 lattice. The experimental/theoretical results indicate that a change of the coordination environment for the cobalt atom by the lattice strain modulates the d-band center with more electrons occupied in antibonding orbitals, thus balancing the adsorption of polysulfides and the intrinsic catalytic effect, thereby activating the intrinsic activity of the catalyst. Benefiting from the merits, with only 4 wt% dosages of catalyst in the cathode, an initial discharge capacity of 1030 mAh g-1 can be achieved at 1 C and stable cycling performances are achieved for 1500/2500 cycles at 1 C/2 C. Upon sulfur loading of 7.7 mg cm-2 , the areal capacity can reach 12.8 mAh cm-2 . This work provides a guiding methodology for the design of catalytic materials and refinement of adsorption-catalysis strategies for the rational design of cathode in lithium-sulfur batteries.

16.
Aging (Albany NY) ; 14(18): 7408-7415, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098705

RESUMO

As the leading cause of cancer-related death worldwide, non-small-cell lung cancer (NSCLC) is still in need of improved therapeutic strategies. CircKIF4A has been found to be involved in the progression of multiple cancers while its role in NSCLC remains unclear. To investigate the functions of circKIF4A, we assessed the expression of circKIF4A in NSCLC cells and tissues and performed experiments to determine the detailed functions of circKIF4A in NSCLC, including migration and proliferation. We found CircKIF4A expressed more heavily in the cells and tissues of NSCLC patients, and functional studies showed that inhibition of circKIF4A reduced NSCLC cells metastasis and proliferation. Furthermore, we seek to identify the underlying regulatory effect of circKIF4A in NSCLC. Studies revealed that circKIF4A sponged miR-1238 to promote NSCLC progression by up-regulating claudin14 (CLDN14) expression. In conclusion, circKIF4A is a potential diagnostic and therapeutic target in the circKIF4A/miR-1238/CLDN14 axis that plays an important role in NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Claudinas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Front Genet ; 13: 798020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664322

RESUMO

Esophageal cancer (ESCA) is one of the common malignant tumors. The roles and signaling mechanisms of spindle apparatus coiled-coil protein 1 (SPDL1) in ESCA progression have not been reported previously. Therefore, the expression levels and potential clinical roles of SPDL1 were investigated using data from multiple databases and tissue samples of 53 ESCA patients who underwent 18F-FDG positron emission tomography (PET)/computed tomography (CT) before therapy. The signaling mechanisms of SPDL1 involved in ESCA progression were investigated via bioinformatics analysis. The effects of SPDL1 on the growth and migration of ESCA cells were investigated using CCK-8, Edu, and transwell assays. SPDL1 was upregulated in ESCA tissues. Increased SPDL1 expression was associated with age, grade, drinking history, cancer stage, lymph node metastasis, TP53 mutation, and poor prognosis in patients with ESCA. SPDL1 overexpression was significantly correlated with SUVmax, SUVmean, and TLG of PET/CT. SPDL1 silencing inhibited cell proliferation, migration, and invasion. SPDL1 was significantly enriched in cell cycle, spliceosome, DNA replication, and other processes. The hub genes of a constructed protein-protein interaction network included CDK1, BUB1, CCNB1, BUB1B, CCNA2, CDC20, MAD2L1, AURKB, NDC80, and PLK1, which were related to SPDL1 expression. The findings of this study suggest that SPDL1 may serve as a biomarker of ESCA prognosis.

18.
Dalton Trans ; 51(20): 7817-7827, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35532008

RESUMO

High-performance lithium ion batteries (LIBs) juggling high reversible capacity, excellent rate capability and ultralong cycle stability are urgently needed for all electronic devices. Here we report employing a vesicle-like porous N-doped carbon material (abbr. N/C-900) as a highly active anode for LIBs to balance high capacity, high rate and long life. The N/C-900 material was fabricated by pyrolysis of a designed crystal MOF LCU-104, which exhibits a graceful two-fold interpenetrating structural feature of N-rich nanocages {Zn6(dttz)4} linked through an N-donor ligand bpp (H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole, bpp = 1,3-bis(4-pyridyl)propane). The features of LCU-104 combine high N content (35.1%), interpenetration, and explosive characteristics, which endow the derived N/C material with optimized N-doping for tuning its chemical and electronic structure, a suitably thicker wall to enhance its stability, and a vesicle-like structure to improve its porosity. As an anode material for LIBs, N/C-900 delivers a highly reversible capacity of ca. 734 mA h g-1 at a large current density of 1 A g-1 until the 2000th cycle, revealing its ultralong cycle stability and excellent rate capability. The unique structure and preferential interaction between abundant pyridinic N active sites and Li atoms are responsible for the improved excellent lithium storage capacity and durability performances of the anode according to analysis of the results of computational modeling.

19.
ACS Appl Mater Interfaces ; 14(18): 21623-21635, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471018

RESUMO

Although flexible sensors have attracted considerable attention in emerging fields, including wearable electronics and soft robotics, their stability must be considered in practical applications, especially the effects of external factors on the sensing performance. Herein, a recyclable flexible sensor with superhydrophobicity and a highly sensitive strain response was developed by combining electrospinning and ultrasonication anchoring techniques. The constructed hierarchical network structure is composed of the fluorine-free superhydrophobic multiwalled carbon nanotubes and a porous elastomer membrane substrate reinforced by nanoparticles. The obtained sensor exhibited exceptional strain-sensing performance in terms of ultrahigh sensitivity (maximum gauge factor of 12 172.46), a fast response time of 80 ms, and excellent durability (10 000 cycles). Based on these outstanding merits, the strain sensor can detect various human motions without being interfered with by harsh environments. Moreover, superhydrophobic membranes can be combined with electronic devices for weather monitoring and underwater sensing. Noteworthily, damaged sensors can be quickly dissolved by a small amount of cyclohexane, enabling material recovery. The recyclable multifunctional membranes could reduce the potential pollution to the environment and show highly promising applications in complex environments.

20.
Crit Rev Eukaryot Gene Expr ; 32(2): 39-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381130

RESUMO

Long noncoding RNA (lncRNA) KTN1 antisense RNA 1 (KTN1-AS1) has been characterized as an oncogenic lncRNA in liver cancer. In this study, we investigated the functions of KTN1-AS1 in non-small-cell lung cancer (NSCLC). A total of 66 patients (27 females and 39 males, 28 to 67 years old, mean age 47.1 ± 6.6 years) with NSCLC were enrolled in this study. KTN1-AS1 and CDK1 expression in tissue samples of NSCLC patients were analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Cell cycle progression assay and cell proliferation assay were performed to analyze the role of KTN1-AS1 in cell cycle progression and cell proliferation. RT-qPCR and Western blot analyses of cells with overexpression were performed to analyze the role of KTN1-AS1 in CDK1 expression. KTN1-AS1 was upregulated in NSCLC tissues and its expression level was positive correlated with CDK1 expression. KTN1-AS1 expression was not changed with clinical stages increasing, and higher KTN1-AS1 levels were associated with poor survival of NSCLC patients. KTN1-AS1 silencing induced G1 phase cell cycle arrest of NSCLC cells and downregulated CDK1. Moreover, KTN1-AS1 silencing suppressed NSCLC cell proliferation and CDK1 overexpression attenuated the effects of KTN1-AS1 silencing on cell proliferation. KTN1-AS1 may regulate cell cycle progression in NSCLC by regulating CDK1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA