Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27214, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463855

RESUMO

Rhinoviruses (RVs) are major causes of the common cold and are related to severe respiratory tract diseases, leading to a considerable economic burden and impacts on public health. Available and stable viral resources of rhinoviruses for laboratory use are important for promoting studies on rhinoviruses and further vaccine or therapeutic drug development. Reverse genetic technology can be useful to produce rhinoviruses and will help to promote studies on their pathogenesis and virulence. In this study, rhinovirus A89, an RV-A species that has been found to be highly involved in hospitalization triggered by RV infections, was selected to construct an infectious clone based on its sequence as a representative. The viral mRNA produced by a T7 RNA transcript system was transfected into H1-HeLa cells, and the rescued RV-A89 viruses were harvested and confirmed by sequencing. The rescued RV-A89 induced a similar cytopathic effect (CPE) and shared almost identical growth kinetics curves with parental RV-A89. Moreover, 9A7, a prescreened monoclonal antibody against the parental RV-A89, had a good and specific reaction with the rescued RV-A89, and further characterization showed almost the same morphology and protein composition of both viruses; thus, recombinant RV-A89 with similar biological characterization and virulence to the parental virus was obtained. In summary, the infectious clone of RV-A89 was successfully established, and the development of reverse genetic technology for rhinovirus will provide a framework for further studies on rhinoviruses.

2.
Antiviral Res ; 221: 105781, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097049

RESUMO

Coxsackievirus B6 (CVB6), a member of the human enterovirus family, is associated with severe diseases such as myocarditis in children. However, to date, only a limited number of CVB6 strains have been identified, and their characterization in animal models has been lacking. To address this gap, in this study, a neonatal murine model of CVB6 infection was established to compare the replication and virulence of three infectious-clone-derived CVB6 strains in vivo. The results showed that following challenge with a lethal dose of CVB6 strains, the neonatal mice rapidly exhibited a series of clinical signs, such as weight loss, limb paralysis, and death. For the two high-virulence CVB6 strains, histological examination revealed myocyte necrosis in skeletal and cardiac muscle, and immunohistochemistry confirmed the expression of CVB6 viral protein in these tissues. Real-time PCR assay also revealed higher viral loads in the skeletal and cardiac muscle than in other tissues at different time points post infection. Furthermore, the protective effect of passive immunization with antisera and a neutralizing monoclonal antibody against CVB6 infection was evaluated in the neonatal mouse model. This study should provide insights into the pathogenesis of CVB6 and facilitate further research in the development of vaccines and antivirals against CVBs.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Criança , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Virulência , Enterovirus Humano B , Anticorpos Neutralizantes/uso terapêutico , Camundongos Endogâmicos C57BL , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Front Microbiol ; 13: 983656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212859

RESUMO

Human Rhinoviruses (RVs) are dominant pathogens causing a wide range of respiratory tract diseases, posing a huge threat to public health worldwide. Viruses belonging to the RV-C species are more likely to cause severe illnesses and are strongly associated with asthma onset or exacerbations than RV-A or RV-B. Rapid and sensitive detection of neutralizing antibodies (NAbs) against RV-C can promote the development of vaccines and antiviral drugs and help in the diagnosis of viral infection. In this study, a rapid neutralization testing system for RV-C15, based on an enzyme-linked immunospot assay (Nt-ELISPOT) was developed. A monoclonal antibody (MAb), named 9F9, with high binding efficacy for RV-C15 conjugated to horseradish peroxidase (HRP), was used to detect RV-C15-infected cells at a concentration of 2 µg/ml. The optimal infectious dose of RV-C15 was set at 1 × 104 TCID50/well and the cells were fixed with 0.5% formaldehyde diluted in PBS after incubation for 20 h. Compared with the traditional cytopathic effect (CPE)-based neutralization assay (Nt-CPE), Nt-ELISPOT significantly shortened the detection period and showed good consistency with the detection of neutralizing titers of both sera and NAbs. Using Nt-ELISPOT, three anti-RV-C15 NAbs were obtained with IC50 values of 0.16, 0.27, and 11.8 µg/ml, respectively. Moreover, 64 human serum samples collected from a wide range of age groups were tested for NAb against RV-C15 by Nt-ELISPOT. The total seroprevalence was 48.4% (31/64) and the positive rate was lowest in the group under 6 years old. Thus, the Nt-ELISPOT established in this study can be used as a high-throughput and rapid neutralization assay for the screening of NAbs and for seroepidemiological investigation against RV-C15.

4.
J Med Chem ; 65(21): 14792-14808, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36254462

RESUMO

Enterovirus D68 (EV-D68) is a nonpolio enterovirus that is mainly transmitted through respiratory routes and poses a potential threat for large-scale spread. EV-D68 infections mostly cause moderate to severe respiratory diseases in children and potentially induce neurological diseases. However, there are no specific antiviral drugs or vaccines against EV-D68. Herein, through virtual screening and rational design, a series of novel quinoline analogues as anti-EV-D68 agents targeting VP1 were identified. Particularly, 19 exhibited potent antiviral activity with an EC50 value ranging from 0.05 to 0.10 µM against various EV-D68 strains and showed inhibition of viral replication verified by Western blot, immunofluorescence, and plaque formation assay. Mechanistic studies indicated that the anti-EV-D68 agents work mainly by interacting with VP1. The acceptable bioavailability of 23.9% in rats and significant metabolic stability in human liver microsome (Clint = 10.8 mL/min/kg, t1/2 = 148 min) indicated that compound 19 with a novel scaffold was worth further investigation.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Quinolinas , Infecções Respiratórias , Criança , Humanos , Ratos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Enterovirus/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico
5.
Cell Host Microbe ; 30(9): 1279-1294.e6, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36002016

RESUMO

Coxsackievirus B1 (CVB1) is an emerging pathogen associated with severe neonatal diseases including aseptic meningitis, myocarditis, and pancreatitis and also with the development of type 1 diabetes. We characterize the binding and therapeutic efficacies of three CVB1-specific neutralizing antibodies (nAbs) identified for their ability to inhibit host receptor engagement. High-resolution cryo-EM structures showed that these antibodies recognize different epitopes but with an overlapping region in the capsid VP2 protein and specifically the highly variable EF loop. Moreover, they perturb capsid-receptor interactions by binding various viral particle forms. Antibody combinations achieve synergetic neutralization via a stepwise capsid transition and virion disruption, indicating dynamic changes in the virion in response to multiple nAbs targeting the receptor-binding site. Furthermore, this three-antibody cocktail protects against lethal challenge in neonatal mice and limits pancreatitis and viral replication in a non-obese diabetic mouse model. These results illustrate the utility of nAbs for rational design of therapeutics against picornaviruses such as CVB.


Assuntos
Anticorpos Antivirais , Pancreatite , Animais , Anticorpos Neutralizantes , Capsídeo/química , Proteínas do Capsídeo , Epitopos , Camundongos
6.
Diagn Microbiol Infect Dis ; 103(2): 115676, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405611

RESUMO

Coxsackievirus B1 (CVB1) is a major pathogen that causes viral myocarditis and aseptic meningitis and is implicated as a cause of type 1 diabetes mellitus. The rapid detection of neutralizing antibodies can help in the prevention and diagnosis of viral infection. The traditional cytopathic effect (CPE)-based neutralization assay (Nt-CPE) is time-consuming and labor-intensive. In this study, an efficient neutralization test based on an enzyme-linked immunospot assay and a monoclonal antibody 2E6 against CVB1 (Nt-Elispot) was developed. In this optimal Nt-Elispot, a multiplicity of infection (MOI) of 1 per well was set as the infection dose, and an incubation time of 18 hours was selected as the checkpoint. Compared with Nt-CPE, Nt-Elispot significantly shortened the detection period and displayed a good correlation with it. This established CVB1 Nt-Elispot could be applied to efficiently screen neutralizing antibodies and evaluate the level of NAb against CVB1 in large cohorts.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Monoclonais , ELISPOT , Humanos , Testes de Neutralização
7.
Virol Sin ; 36(6): 1575-1584, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581960

RESUMO

Coxsackievirus B1 (CVB1) is a leading causative agent of severe infectious diseases in humans and has been reported to be associated with outbreaks of aseptic meningitis, myocarditis, and the development of chronic diseases such as type 1 diabetes mellitus (T1DM). There is no approved vaccine or effective antiviral therapy to treat CBV1 infection. And animal models to assess the effects of antiviral agents and vaccine remain limited. In this study, we established a neonatal mouse model of CVB1 using a clinically isolated strain to characterize the pathological manifestations of virus infection and to promote the development of vaccines and antiviral drugs against CVB1. One-day-old BALB/c mice were susceptible to CVB1 infection by intraperitoneal injection. Mice challenged with CVB1 at a low dose [10 median tissue culture infective dose (TCID50)] exhibited a series of clinical symptoms, such as inactivity, emaciation, limb weakness, hair thinning, hunching and even death. Pathological examination and tissue viral load analysis showed that positive signals of CVB1 were detected in the heart, spinal cord, limb muscle and kidney without pathological damage. Particularly, CVB1 had a strong tropism towards the pancreas, causing severe cellular necrosis with inflammatory infiltration, and was spread by viraemia. Notably, the monoclonal antibody (mAb) 6H5 and antisera elicited from CVB1-vaccinated mice effectively protected the mice from CVB1 infection in the mouse model. In summary, the established neonatal mouse model is an effective tool for evaluating the efficacy of CVB1 antiviral reagents and vaccines.


Assuntos
Infecções por Coxsackievirus , Vacinas Virais , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Infecções por Coxsackievirus/tratamento farmacológico , Modelos Animais de Doenças , Camundongos
8.
Cell Host Microbe ; 29(3): 448-462.e5, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539764

RESUMO

Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.


Assuntos
Microscopia Crioeletrônica , Enterovirus/metabolismo , Enterovirus/ultraestrutura , Animais , Anticorpos Neutralizantes , Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Receptores Virais , Vírion/metabolismo , Vírion/ultraestrutura , Desenvelopamento do Vírus
9.
Cell Host Microbe ; 27(2): 249-261.e5, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32027857

RESUMO

Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms-the mature virion, A-particle, and empty particle-and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.


Assuntos
Anticorpos Neutralizantes , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Proteínas do Capsídeo/imunologia , Linhagem Celular , Microscopia Crioeletrônica , Enterovirus/imunologia , Enterovirus/ultraestrutura , Enterovirus Humano A/ultraestrutura , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Camundongos , Vacinas Virais/imunologia , Vírion/imunologia
10.
ACS Infect Dis ; 6(5): 811-819, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840495

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that has been associated with neuropathology in fetuses and adults, imposing a serious health concern. Therefore, the development of a vaccine is a global health priority. Notably, neutralization tests have a significant value for vaccine development and virus diagnosis. The cytopathic effect (CPE)-based neutralization test (Nt-CPE) is a common neutralization method for ZIKV. However, this method has some drawbacks, such as being time-consuming and labor-intensive and having low-throughput, which precludes its application in the detection of large numbers of specimens. To improve this problem, we developed a neutralization test based on an enzyme-linked immunospot assay (Nt-ELISPOT) for ZIKV and performed the assay in a 96-well format. A monoclonal antibody (mAb), 11C11, with high affinity and reactivity to ZIKV was used to detect ZIKV-infected cells. To optimize this method, the infectious dose of ZIKV was set at a multiplicity of infection (MOI) of 0.0625, and a detection experiment was performed after incubating for 24 h. As a result, under these conditions, the Nt-ELISPOT had good consistency with the traditional Nt-CPE to measure neutralizing titers of sera and neutralizing antibodies. Additionally, three neutralizing antibodies against ZIKV were screened by this method. Overall, we successfully developed an efficient neutralization test for ZIKV that is high-throughput and rapid. This Nt-ELISPOT can potentially be applied to detecting neutralizing titers of large numbers of specimens in vaccine evaluation and neutralizing antibody screening for ZIKV.


Assuntos
Anticorpos Antivirais , ELISPOT , Testes de Neutralização , Infecção por Zika virus , Zika virus , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Zika virus/imunologia , Infecção por Zika virus/diagnóstico
11.
Biomater Sci ; 7(5): 1794-1800, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30888360

RESUMO

Biomedical applications and nanotechnological advances, including constrained synthesis, multimodal imaging, drug delivery, and bioassay, have strongly benefited from employing ferritin nanocages due to their remarkable properties of easy engineering, great biocompatible features, large capacity and so on. In this study, ferritin nanocages were used to display epitopes (model antigens derived from Enterovirus 71 (EV71) with different length) on C- and N-terminals and the loop zone to search for the optimal position for the fusion of the epitopes to the vaccine platform. The longest epitope displayed on the N-terminal and loop zone as well as the second longest peptide displayed on the loop zone of ferritin resulted in 100% passive protection of newborn BALB/c mice from the lethal EV71. This suggests that peptides fused onto the loop zone of ferritin could induce strong immune response. Our results increase the versatility of the vaccine platform and provide more options for the production of stable constructs, suggesting the potential future clinical applicability of ferritin-based antigen delivery nanoplatforms.


Assuntos
Antígenos Virais/química , Portadores de Fármacos/química , Desenho de Fármacos , Epitopos/química , Ferritinas/química , Nanoestruturas/química , Sequência de Aminoácidos , Animais , Antígenos Virais/imunologia , Enterovirus/imunologia , Epitopos/imunologia , Imunização , Camundongos , Modelos Moleculares , Conformação Proteica , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
12.
Hum Vaccin Immunother ; 15(10): 2343-2350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735461

RESUMO

Coxsackievirus A16 (CA16) has caused worldwide epidemics of hand, foot and mouth disease (HFMD), particularly in infants and pre-school children. Currently, there are no vaccines or antiviral drugs available for CA16-associated disease. In this study, a CA16-specific monoclonal antibody (MAb) NA11F12 was derived with an epidemic CA16 strain (GenBank no. JX127258). NA11F12 was found to have high cross-neutralization activity against different CA16 subgenotypes but not EV71 using RD cells. The neutralizing titers of NA11F12 ranged from 1:1024 to 1:12288 against A, B1, B2 and C subgenotypes of CA16 and was less than 8 against EV71 strain. In the neonatal mouse model, a single treatment of NA11F12 showed effective protection with a dose- and time-dependent relationship against lethal challenge by CA16 strain (GenBank no. JX481738). At day 1 post-infection, administering more than 0.1 µg/g of NA11F12 could protect 100% newborn mice from mobility and mortality challenged by CA16. With dose of 10 µg/g of NA11F12, a single administration fully protected mice against CA16-associated disease within 4 days post-infection. And there were 80% and 60% mice protected by administering NA11F12 at day 5 post-infection and day 6 post-infection when the control mice had shown clinical symptoms for 1- and 2-day, respectively. Immunohistochemical and histological analysis confirmed that NA11F12 significantly prohibited CA16 VP1 expression in various tissues and prevented CA16-induced necrosis. In conclusion, a CA16-specific MAb NA11F12 with high cross-neutralization activity was identified, which could effectively protect lethal CA16 challenge in mice. It could be a potential therapeutic MAb against CA16 in the future.


Assuntos
Anticorpos Antivirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/uso terapêutico , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Animais , Animais Recém-Nascidos , Doença de Mão, Pé e Boca/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Virais
13.
Appl Microbiol Biotechnol ; 103(4): 1931-1938, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617817

RESUMO

Coxsackievirus A10 (CVA10) recently has become one of the major pathogens of hand, foot, and mouth disease (HFMD) in children worldwide, but no cure or vaccine against CVA10 is available yet. Serological evaluation of herd immunity to CVA10 will promote the development of vaccine. The traditional neutralization assay based on inhibition of cytopathic effect (Nt-CPE) is a common method for measuring neutralizing antibody titer against CVA10, which is time-consuming and labor-intensive. In this study, an efficient neutralization test based on a monoclonal antibody (mAb) 3D1 against CVA10, called Elispot-based neutralization test (Nt-Elispot), was developed. In the Nt-Elispot, the mAb 3D1 labeled with horseradish peroxidase (HRP) was used to detect the CVA10-infected RD cells at a 1:4000 dilution and the optimal infectious dose of CVA10 was set at 105 TCID50/well when combined with a fixed incubation time of 14 h. Compared with the Nt-CPE, the Nt-Elispot method effectively shortened the detection period and presented a good correlativity with it. Using the Nt-Elispot, a total of 123 sera from healthy children were tested for neutralizing antibody against CVA10, demonstrating that the overall seroprevalence was 49.3% (54/123) and the geometric mean titer (GMT) had been calculated as 574.2. Furthermore, 2 anti-CVA10 neutralizing mAbs were obtained by screening via the Nt-Elispot. Overall, the established Nt-Elispot could be used as an efficient and high-throughput method for evaluating immunity to CVA10 and screening the neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Enterovirus/imunologia , Doença de Mão, Pé e Boca/imunologia , Testes de Neutralização/métodos , Pré-Escolar , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lactente , Estudos Soroepidemiológicos
14.
Antiviral Res ; 161: 28-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419253

RESUMO

Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of hand, foot and mouth disease (HFMD), which affects children worldwide and is often associated with neurological complications. At present, there is no vaccine or cure available for simultaneous EV71 and CA16 infection, posing a great need to develop novel strategies for the treatment of this disease. Here, we engineered four bispecific antibodies using variable fragments of monoclonal antibodies (mAbs) from EV71- and CA16-specific neutralizing antibodies. The engineered bispecific antibody Bs(scFv)4-IgG-1 exhibits remarkable cross-reactivity against EV71 and CA16 and has a more potent cross-neutralization than its parental antibodies. Furthermore, we showed that Bs(scFv)4-IgG-1 conferred 100% therapeutic efficacy against single or mixed EV71 and CA16 infections in mice. Our study provides important insights into bispecific antibody engineering against enterovirus and will inform new curative treatment options for HFMD.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecções por Enterovirus/terapia , Doença de Mão, Pé e Boca/terapia , Animais , Reações Cruzadas , Enterovirus/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Engenharia Genética , Camundongos
15.
Nat Microbiol ; 4(1): 124-133, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30397341

RESUMO

Enterovirus D68 (EV-D68) undergoes structural transformation between mature, cell-entry intermediate (A-particle) and empty forms throughout its life cycle. Structural information for the various forms and antibody-bound capsids will facilitate the development of effective vaccines and therapeutics against EV-D68 infection, which causes childhood respiratory and paralytic diseases worldwide. Here, we report the structures of three EV-D68 capsid states representing the virus at major phases. We further describe two original monoclonal antibodies (15C5 and 11G1) with distinct structurally defined mechanisms for virus neutralization. 15C5 and 11G1 engage the capsid loci at icosahedral three-fold and five-fold axes, respectively. To block viral attachment, 15C5 binds three forms of capsids, and triggers mature virions to transform into A-particles, mimicking engagement by the functional receptor ICAM-5, whereas 11G1 exclusively recognizes the A-particle. Our data provide a structural and molecular explanation for the transition of picornavirus capsid conformations and demonstrate distinct mechanisms for antibody-mediated neutralization.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/ultraestrutura , Capsídeo/imunologia , Enterovirus/imunologia , Animais , Anticorpos Monoclonais/ultraestrutura , Complexo Antígeno-Anticorpo/imunologia , Capsídeo/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Enterovirus Humano D , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo
16.
Sci Adv ; 4(9): eaat7459, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255146

RESUMO

Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo-electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8's remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.


Assuntos
Anticorpos Neutralizantes/farmacologia , Enterovirus Humano A/imunologia , Vacinas Virais/farmacologia , Vírion/química , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Capsídeo/química , Reações Cruzadas , Microscopia Crioeletrônica , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacinas Virais/imunologia , Vírion/imunologia
17.
Emerg Microbes Infect ; 7(1): 2, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323107

RESUMO

Human enteroviruses (EVs) are the most common causative agents infecting human, causing many harmful diseases, such as hand, foot, and mouth disease (HFMD), herpangina (HA), myocarditis, encephalitis, and aseptic meningitis. EV-related diseases pose a serious worldwide threat to public health. To gain comprehensive insight into the seroepidemiology of major prevalent EVs in humans, we firstly performed a serological survey for neutralizing antibodies (nAbs) against Enterovirus A71 (EV-A71), Coxsackie virus A16 (CV-A16), Coxsackie virus A6 (CV-A6), Coxsackie virus A10 (CV-A10), Coxsackie virus B3 (CV-B3), Coxsackie virus B5 (CV-B5), Echovirus 25 (ECHO25), and Echovirus 30 (ECHO30) among the healthy population in Xiamen City in 2016, using micro-neutralization assay. A total of 515 subjects aged 5 months to 83 years were recruited by stratified random sampling. Most major human EVs are widely circulated in Xiamen City and usually infect infants and children. The overall seroprevalence of these eight EVs were ranged from 14.4% to 42.7%, and most of them increased with age and subsequently reached a plateau. The co-existence of nAbs against various EVs are common among people ≥ 7 years of age, due to the alternate infections or co-infections with different serotypes of EVs, while most children were negative for nAb against EVs, especially those < 1 year of age. This is the first report detailing the seroepidemiology of eight prevalent EVs in the same population, which provides scientific data supporting further studies on the improvement of EV-related disease prevention and control.


Assuntos
Anticorpos Neutralizantes/sangue , Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Vigilância Imunológica , Estudos Soroepidemiológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Criança , Pré-Escolar , Enterovirus Humano A/imunologia , Enterovirus Humano B/imunologia , Feminino , Voluntários Saudáveis , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Nat Commun ; 8(1): 505, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894095

RESUMO

Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.Coxsackievirus A6 (CVA6) causes hand, foot and mouth disease in children. Here the authors present the CVA6 procapsid and A-particle cryo-EM structures and identify an immune-dominant neutralizing epitope, which can be exploited for vaccine development.


Assuntos
Anticorpos Neutralizantes/química , Microscopia Crioeletrônica/métodos , Enterovirus Humano A/química , Animais , Capsídeo/química , Enterovirus Humano A/imunologia , Enterovirus Humano A/patogenicidade , Epitopos , Humanos , Imageamento Tridimensional , Camundongos , Proteínas Virais/química , Proteínas Virais/metabolismo , Vacinas Virais/química , Vacinas Virais/imunologia
19.
Antiviral Res ; 144: 247-255, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28625478

RESUMO

Epidemiological data indicate that coxsackievirus A10 (CVA10) has become one of the main causative agents of hand, foot and mouth disease (HFMD) and in recent years has often been found to co-circulate with other enteroviruses, which poses a challenge for the prevention and control of HFMD. Although most CVA10-associated HFMD cases present mild symptoms, severe manifestations and even death can also occur. However, the study of the pathogenesis and the development of drugs and vaccines for CVA10 infection are still far from complete. In this study, we established a neonatal mouse model for anti-viral evaluation and characterized the pathology of CVA10 infection. To develop the mouse model, both inbred and outbred mouse strains were used to compare their sensitivity to CVA10 infection; then, one-day-old BALB/c mice were selected and inoculated intraperitoneally with a CVA10 clinical strain, CVA10-FJ-01. Clinical symptoms, such as wasting, hind-limb paralysis and even death were observed in the CVA10-infected mice. Moreover, pathological examination and immunohistochemistry staining showed that severe myonecrosis with inflammatory infiltration was observed in CVA10-infected mice, indicating that CVA10 exhibited strong tropism to muscle tissue. Using real-time PCR, we also found that the viral load in the blood and muscle was higher than that in other organs/tissues at different time points post-infection, suggesting that CVA10 had a strong tropism to mice muscle and that viremic spread may also contribute to the death of the CVA10-infected mice. Additionally, to evaluate the neonatal mouse model of CVA10 infection, female mice were immunized with formalin-inactivated CVA10 and then allowed to mate after the third immunization. The results showed that maternal antibodies could protect mice against CVA10 infection. In summary, the results demonstrated that the neonatal mice model was a useful tool for evaluating the protective effects of CVA10 vaccines and anti-viral reagents.


Assuntos
Antivirais/administração & dosagem , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Enterovirus/patogenicidade , Animais , Animais Recém-Nascidos , Sangue/virologia , Infecções por Coxsackievirus/virologia , Camundongos Endogâmicos BALB C , Miosite/patologia , Miosite/virologia , Necrose/patologia , Carga Viral , Tropismo Viral
20.
Vaccine ; 35(20): 2728-2735, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28408118

RESUMO

Chicken pox and hand, foot and mouth disease (HFMD) are two major infectious diseases that mainly affect infants and children, causing significant morbidity annually. Varicella-zoster virus (VZV) and enterovirus 71 (EV71), respectively, are the principal epidemic pathogens causing these two diseases. To investigate the possibility of developing a novel combined vaccine to prevent chicken pox and HFMD, we constructed three chimeric virus-like particles (VLPs) (termed HBc-V/1/2, HBc-2/V/1 and HBc-1/2/V) based on the hepatitis B core antigen (HBc) carrier that display epitopes derived from VZV-gE, EV71-VP1, and EV71-VP2 in a varied tandem manner. The chimeric HBc can self-assemble into VLPs with these three epitopes displayed on the surface of particles. Epitope-specific antibody characterization suggested that HBc-V/1/2 elicits a balanced antibody response toward these three epitopes, and no immune interference was observed between the three epitopes. Importantly, the anti-HBc-V/1/2 sera could simultaneously neutralize VZV and EV71 and cross-neutralize coxsackievirus A16 (CVA16), another major pathogen causing HFMD. Moreover, the anti-HBc-V/1/2 sera protected neonatal mice from lethal challenge of EV71 and CVA16. Collectively, our study not only demonstrated that HBc-V/1/2 is a promising candidate combined vaccine for HFMD and Chicken pox but also provides a novel strategy for the design of combined vaccines.


Assuntos
Varicela/prevenção & controle , Enterovirus Humano A/imunologia , Epitopos/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Herpesvirus Humano 3/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Portadores de Fármacos , Enterovirus Humano A/genética , Epitopos/genética , Feminino , Antígenos do Núcleo do Vírus da Hepatite B/genética , Herpesvirus Humano 3/genética , Camundongos Endogâmicos BALB C , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA