Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(5)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206764

RESUMO

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease continuum from simple steatosis to nonalcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD, although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NAFLD, the identification of potential therapeutic targets is clinically important. Here, we demonstrated that tripartite motif 56 (TRIM56) protein abundance was markedly downregulated in the livers of individuals with NAFLD and of mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactome and transcriptome profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified the lipogenesis factor fatty acid synthase (FASN) as a direct binding partner of TRIM56. TRIM56 directly interacted with FASN and triggered its K48-linked ubiquitination-dependent degradation. Finally, using artificial intelligence-based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) that potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with an optimal safety, tolerability, and pharmacokinetics profile. Our findings provide proof of concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Inteligência Artificial , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/genética , Hepatopatia Gordurosa não Alcoólica/genética
2.
Nat Commun ; 14(1): 5755, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716995

RESUMO

The diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La's conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.


Assuntos
Basidiomycota , Virulência , Proteínas de Membrana , Saccharomyces cerevisiae , Fenóis
3.
Plant Methods ; 19(1): 94, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653449

RESUMO

BACKGROUND: Virus-induced gene silencing (VIGS) is a reverse genetics technology that can efficiently and rapidly identify plant gene functions. Although a variety of VIGS vectors have been successfully used in plants, only a few reports on VIGS technology in Luffa exist. RESULTS: In the present study, a new cucumber green mottle mosaic virus (CGMMV)-based VIGS vector, pV190, was applied to establish the CGMMV-VIGS to investigate the feasibility of the silencing system for Luffa. Phytoene desaturase (PDS) gene was initially selected as a VIGS marker gene to construct a recombinant vector. Plants infected with Agrobacterium harboring pV190-PDS successfully induced effective silencing in Luffa, and an effective gene silencing phenotype with obvious photobleaching was observed. To further validate the efficiency, we selected TEN for gene-silencing, which encodes a CYC/TB1-like transcription factor and is involved in tendril development. Luffa plants inoculated with the pV190-TEN exhibited shorter tendril length and nodal positions where tendrils appear are higher compared to those of non-inoculated plants. RT-qPCR showed that the expression levels of PDS and TEN were significantly reduced in the CGMMV-VIGS plants. Moreover, we evaluated the CGMMV-VIGS efficiency in three cucurbits, including cucumber, ridge gourd, and bottle gourd. CONCLUSION: We successfully established a CGMMV-based VIGS system on ridge gourd and used marker genes to identify the feasibility of the silencing system in Luffa leaves and stems.

4.
Signal Transduct Target Ther ; 8(1): 220, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244925

RESUMO

The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.


Assuntos
Doenças Metabólicas , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/genética , Fosforilação , Glicosilação , Proteoma , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética
5.
Pol J Microbiol ; 72(1): 47-60, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36929894

RESUMO

For decades chlorine dioxide has been used in water disinfection with excellent results. As the scope of application expands, chlorine dioxide has the potential for soil disinfection. We used amplicon sequencing and gas chromatography-mass spectrometry to compare the changes of four mixed rhizosphere microbial community samples and 12 tobacco leaf volatile samples four months after the flood irrigation with chlorine dioxide in different concentrations (0, 2, 4, 8 mg/l). Phenotypic data of 60 tobacco plants were also collected. The effects of chlorine dioxide on rhizosphere microorganisms were positively correlated with dose gradients. Bacteria responded more strongly in both community structure and metabolic pathways than fungi. Five new bacterial phyla (Firmicutes, Bacteroidota, Myxococcota, Patescibacteria, Verrucomicroboata) appeared in chlorine dioxide treatment groups, while the fungal community only appeared as one new fungal phylum (Basidomycota). Alterations in 271 predicted metabolic bacterial pathways were found. However, in the fungal community were only 10 alternations. The correlations between leaf volatile compounds and rhizosphere microorganisms under the influence of chlorine dioxide treatment could be observed based on network results. However, natural connectivity had already been declining rapidly when less than 20% of the network's nodes were removed. Therefore, the microbe-metabolite network is not stable. It might be why chlorine dioxide treatments did not significantly affect tobacco quality (p = 0.754) and phenotype (p = 0.867). As a comprehensive investigation of chlorine dioxide in agriculture, this study proves the effectiveness and safety of chlorine dioxide soil disinfection and widens the application range of chlorine dioxide.


Assuntos
Microbiota , Nicotiana , Rizosfera , Bactérias/genética , Solo/química , Microbiologia do Solo , Raízes de Plantas/microbiologia , Fungos/genética
6.
mBio ; 14(2): e0009323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36946727

RESUMO

Pathogenic fungi convert chitin to chitosan to evade plant perception and disarm chitin-triggered immune responses. Whether plants have evolved factors to counteract this evasion mechanism remains obscure. Here, we decipher the mechanism underlying the antifungal activity of maize secretory mannose-binding cysteine-rich receptor-like secreted protein (CRRSP), antifungal protein 1 (AFP1). AFP1 binds to multiple sites on the surface of sporidial cells, filaments, and germinated spores of the biotrophic fungus Ustilago maydis. It inhibits cell growth and budding, as well as spore germination. AFP1 promiscuously interacts with most chitin deacetylases (CDAs) by recognizing the conserved NodB domain to interfere with the enzyme activity. Deletion of O-mannosyltransferase 4 decreases protein mannosylation, which correlates with reduced AFP1 binding and antifungal activity, suggesting that AFP1 interacts with mannosylated proteins to exhibit an inhibitory effect. AFP1 also has extended inhibitory activity against Saccharomyces cerevisiae; however, AFP1 did not reduce binding to the double ΔΔcda1,2 mutant, suggesting the targets of AFP1 have expanded to other cell surface glycoproteins, probably facilitated by its mannose-binding property. Increasing chitin levels by modulating the activity of cell surface glycoproteins is a universal feature of AFP1 interacting with a broad spectrum of fungi to inhibit their growth. IMPORTANCE Plants alert immune systems by recognizing the fungal pathogen cell wall component chitin via pattern recognition cell surface receptors. Successful fungal pathogens escape the perception by deacetylating chitin to chitosan, which is also necessary for fungal cell development and virulence. Targeting glycoproteins that are associated with regulating chitin metabolism and maintaining cell wall morphogenesis presents an effective strategy to combat fungal pathogens by simultaneously altering cell wall plasticity, activating chitin-triggered immunity, and impairing fungal viability. Our study provides molecular insights into a plant DUF26 domain-containing secretory protein in warding off a broad range of fungal pathogens by acting on more than one glycoprotein target.


Assuntos
Quitina , Quitosana , Quitina/metabolismo , Antifúngicos/metabolismo , Zea mays/microbiologia , Manose , Glicoproteínas , Glicoproteínas de Membrana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Parede Celular/metabolismo
7.
Acta Pharmacol Sin ; 44(7): 1337-1349, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36697977

RESUMO

Diabetic patients frequently experience neuropathic pain, which currently lacks effective treatments. The mechanisms underlying diabetic neuropathic pain remain unclear. The anterior cingulate cortex (ACC) is well-known to participate in the processing and transformation of pain information derived from internal and external sensory stimulation. Accumulating evidence shows that dysfunction of microglia in the central nervous system contributes to many diseases, including chronic pain and neurodegenerative diseases. In this study, we investigated the role of microglial chemokine CXCL12 and its neuronal receptor CXCR4 in diabetic pain development in a mouse diabetic model established by injection of streptozotocin (STZ). Pain sensitization was assessed by the left hindpaw pain threshold in von Frey filament test. Iba1+ microglia in ACC was examined using combined immunohistochemistry and three-dimensional reconstruction. The activity of glutamatergic neurons in ACC (ACCGlu) was detected by whole-cell recording in ACC slices from STZ mice, in vivo multi-tetrode electrophysiological and fiber photometric recordings. We showed that microglia in ACC was significantly activated and microglial CXCL12 expression was up-regulated at the 7-th week post-injection, resulting in hyperactivity of ACCGlu and pain sensitization. Pharmacological inhibition of microglia or blockade of CXCR4 in ACC by infusing minocycline or AMD3100 significantly alleviated diabetic pain through preventing ACCGlu hyperactivity in STZ mice. In addition, inhibition of microglia by infusing minocycline markedly decreased STZ-induced upregulation of microglial CXCL12. Together, this study demonstrated that microglia-mediated ACCGlu hyperactivity drives the development of diabetic pain via the CXCL12/CXCR4 signaling, thus revealing viable therapeutic targets for the treatment of diabetic pain.


Assuntos
Diabetes Mellitus Experimental , Neuralgia , Camundongos , Animais , Microglia/metabolismo , Regulação para Cima , Hiperalgesia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Quimiocina CXCL12/farmacologia , Giro do Cíngulo/metabolismo , Minociclina/farmacologia , Minociclina/uso terapêutico , Medula Espinal/metabolismo , Neuralgia/metabolismo , Modelos Animais de Doenças
8.
Front Plant Sci ; 13: 1035414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340403

RESUMO

Low temperatures are among the most commonly encountered environmental conditions that adversely affect plant growth and development, leading to substantial reductions in crop productivity. Plants have accordingly evolved coordinated mechanisms that confer low-temperature adaptation and resistance. The plant metabolic network, including polyamines (PAs) and γ-aminobutyric acid (GABA) is reprogrammed to ensure that essential metabolic homeostasis is maintained in response to cold stress conditions. Additionally, GABA might serve as a central molecule in the defense system during low-temperature tolerance in plants. However, our understanding of how these metabolites function in conferring cold tolerance is still far from complete. Here, we summarized how PAs and GABA function in conferring cold tolerance, and describe the crucial role of GABA in the mitigation of ROS during cold stress in plants.

9.
Biomolecules ; 12(11)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358944

RESUMO

BACKGROUND: The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce. METHODS: Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers. RESULTS: In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine. CONCLUSIONS: Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging.


Assuntos
Envelhecimento , Glutamina , Camundongos , Animais , Cromatografia Líquida , Espectrometria de Massas , Biomarcadores/metabolismo , Envelhecimento/metabolismo , Ácidos Oleicos
10.
Front Endocrinol (Lausanne) ; 13: 938358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246882

RESUMO

Objective: Type 1 diabetes (T1D) progression is affected by circulating glutamic acid decarboxylase antibody (GADA) that persist for many years. This study aimed at investigating whether and how the gut microbiome and its correlated metabolites change in T1D with the presence of GADA. Methods: We used a radiobinding assay to measure GADA titers and identify the 49 T1D patients with GADA+ and 52 T1D patients with GADA-. The fresh feces and serum were analyzed using 16S rRNA gene sequencing and GC/MS. Then gut microbiome and serum metabolites were compared between the GADA+ patients and the GADA- patients. The association between gut microbial community and metabolites was assessed using the Spearman's rank correlation. Results: The gut microbiome in diversity, composition, and function differed between these two groups. The abundance of genus Alistipes, Ruminococcus significantly increased in patients with GADA+ compared to that observed in the samples of GADA-. There were 54 significantly altered serum metabolites associated with tryptophan metabolism, phenylalanine, and tyrosine biosynthesis in individuals with GADA+ compared with those of GADA-For the serum metabolites, compared with those of GADA-, there were 54 significantly different metabolites with tryptophan metabolism, phenylalanine, and tyrosine and tryptophan biosynthesis decreased in individuals with GADA+. The abundance of Alistipes was positively correlated with altered metabolites involved in tryptophan metabolism. Conclusion: We demonstrate that T1D patients with GADA+ are characterised by aberrant profiles of gut microbiota and serum metabolites. The abundance of Alistipes disturbances may participate in the development of T1D patients with GADA by modulating the host's tryptophan metabolism. These findings extend our insights into the association between the gut microbiota and tryptophan metabolism and GADA and might be targeted for preventing the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Anticorpos , Glutamato Descarboxilase , Humanos , Fenilalanina , RNA Ribossômico 16S , Triptofano , Tirosina
11.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077090

RESUMO

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. RESULTS: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. METHODS: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. CONCLUSION: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteômica , Animais , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteômica/métodos
12.
Biochem Biophys Res Commun ; 622: 163-169, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35868060

RESUMO

Preclinical mouse models of cardiometabolic diseases are crucial to study the pathological mechanisms of cardiometabolic diseases and to explore potential new therapeutic agents. Using double-knockouts in the background of ApoE-/- or Ldlr-/- mice requires an extensive amount of breeding and is costly. A significant breakthrough in atherosclerosis research is the use of AAV8-PCSK9-D377Y (a gain-of-function mutant of PCSK9 which promotes LDLR degradation) injection which can induce hyperlipidemia, increased endothelial stiffness, vascular calcification, aneurysm, and atherosclerotic plaque development in normal C57BL/6J mice. The purpose of this study was to assess the possibility that the injection of AAV8-PCSK9 vectors in db/db mice (a well-established animal model of type 2 diabetes mellitus) produces a novel mouse model of diabetes, atherosclerosis and fatty liver disease to study the pathomechanisms of cardiometabolic disease and its complications. Db/db mice were injected with AAV8-PCSK9-D377Y (AAV8-PCSK9 for simplicity) or AAV8-control and fed with high-cholesterol diets for 8 weeks. Levels of total cholesterol (TC) and triglyceride (TG) were significantly elevated in AAV8-PCSK9-injected mice compared to the controls. AAV8-PCSK9 injection led to increased serum level of PCSK9, serious liver steatosis, hypercholesterolemia and atherosclerotic plaque as determined by aortic arch/roots histopathological staining, with Oil Red O, Masson-trichrome and hematoxylin-eosin staining. RNA sequencing and bioinformatics were used to assess the global gene expression in liver tissues. We conclude that AAV8-PCSK9 injection in db/db mice is a promising and time-efficient approach to induce diabetic atherosclerosis with fatty liver. This mouse model can be a new one to investigate the etiology and therapeutics of atherosclerosis with diabetes and fatty liver beyond the traditional model established in ApoE-/- mice or LDLR-/- mice receiving streptozotocin (STZ) injection.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Hipercolesterolemia , Hepatopatias , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/terapia , Colesterol , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Dieta , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
13.
Endocrinology ; 163(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894166

RESUMO

Increasing incidence of metabolic disturbances has become a severe public healthcare problem. Ion channels and receptors in the paraventricular nucleus (PVN) of the hypothalamus serve vital roles in modulating neuronal activities and endocrine functions, which are linked to the regulation of energy balance and glucose metabolism. In this study, we found that acid-sensing ion channel 1a (ASIC1a), a Ca2+-permeable cationic ion channel was localized in the PVN. Knockdown of ASIC1a in this region led to significant body weight gain, glucose intolerance, and insulin resistance. Pharmacological inhibition of ASIC1a resulted in an increase in food intake and a decrease in energy expenditure. Our findings suggest ASIC1a in the PVN as a potential new target for the therapeutic intervention of metabolic disorders.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Núcleo Hipotalâmico Paraventricular , Canais Iônicos Sensíveis a Ácido/genética , Animais , Metabolismo Energético/genética , Masculino , Camundongos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
14.
Pharmacol Res ; 175: 106043, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954030

RESUMO

Inflammation associated endothelial dysfunction represents a pivotal contributor to atherosclerosis. Increasingly, evidence has demonstrated that interleukin 1 receptor (IL1-R) / toll-like receptor (TLR) signaling participates in the development of atherosclerosis. Recent large-scale clinical trials have supported the therapeutic potential of anti-inflammatory therapies targeting IL-1ß and IL-6 in reducing atherosclerosis. The present study examined the pharmacological effects of IL-1R-associated kinase 1 and 4 inhibitors (IRAK1/4i) in regulating inflammation of the endothelium and atherosclerosis. We demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 by an IRAK1/4i is more effective against LPS induced endothelial inflammation, compared with IRAK1 inhibitor or IRAK4 inhibitor monotherapy. IRAK1/4i showed little endothelial cell toxicity at concentrations from 1 µM up to 10 µM. Inhibition of IRAK1/4 reduced endothelial activation induced by LPS in vitro as evidenced by attenuated monocyte adhesion to the endothelium. Mechanistically, blockade of IRAK1/4 ameliorated the transcriptional activity of NF-κB. To assess the pharmacological effects of IRAK1/4i on atherosclerosis in vivo, ApoE-/- mice were orally administered IRAK1/4i (20 mg/kg/d) for 8 weeks. We show that IRAK1/4i reduced atherosclerotic lesion size in the aortic sinus and increased hepatic LDLR protein levels as well as lowered LDL-C level, without affecting other lipid parameters or glucose tolerance. Taken together, our findings demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 attenuates endothelial inflammation, lowers LDL-C levels and reduces atherosclerosis. Our study reinforces the evolving standing of anti-inflammatory approaches in cardiovascular therapeutics.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Colágeno/metabolismo , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células THP-1
15.
Endocr Connect ; 10(11): 1403-1409, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34636748

RESUMO

A variety of studies have demonstrated the role of lipocalin 2 (LCN2) in both diabetes and neurological disorders. Nevertheless, the relationship between LCN2 and diabetic peripheral neuropathy (DPN) needs to be elucidated in humans. Therefore, this study aimed to investigate the association of LCN2 with DPN in type 2 diabetes (T2D). A total of 207 participants with T2D and 40 participants with normal glucose tolerance (NGT) were included in this study. All participants were classified into DPN group and non-DPN (NDPN) group based on the Toronto Clinical Neuropathy Scoring (TCNS). Demographic and biochemical parameters were measured. Serum LCN2 levels were determined using an ELISA technique. Serum LCN2 levels in NGT group were lower than those in either DPN group (P = 0.000) or NDPN group (P = 0.043), while serum LCN2 levels in DPN group were higher than NDPN group (P = 0.001). Moreover, serum LCN2 levels positively correlated to TCNS scores, which reflects neuropathy severity (r = 0.438, P = 0.000). Multivariate stepwise regression analysis showed that BMI, triglycerides, and diastolic pressure were independently associated with serum LCN2 in DPN. Additionally, logistic regression analysis demonstrated that LCN2 (odds ratio (OR) = 1.009) and diabetes duration (OR = 1.058) were independently associated with the occurrence of DPN in T2D. Our report reveals the association of serum LCN2 with DPN in T2D. LCN2 might be used to evaluate DPN severity and serve a role in the pathogenesis of DPN.

16.
Plant J ; 97(6): 1032-1047, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30480846

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is a complex and destructive disease that affects over 200 plant species. To investigate the interaction of R. solanacearum and its tomato (Solanum lycopersicum) plant host, a comparative proteomic analysis was conducted in tomato stems inoculated with highly and mildly aggressive R. solanacearum isolates (RsH and RsM, respectively). The results indicated a significant alteration of the methionine cycle (MTC) and downregulation of γ-aminobutyric acid (GABA) biosynthesis. Furthermore, transcriptome profiling of two key tissues (stem and root) at three stages (0, 3 and 5 days post-inoculation) with RsH in resistant and susceptible tomato plants is presented. Transcript profiles of MTC and GABA pathways were analyzed. Subsequently, the MTC-associated genes SAMS2, SAHH1 and MS1 and the GABA biosynthesis-related genes GAD2 and SSADH1 were knocked-down by virus-induced gene silencing and the plants' defense responses upon infection with R. solanacearum RsM and RsH were analyzed. These results showed that silencing of SAHH1, MS1 and GAD2 in tomato leads to decreased resistance against R. solanacearum. In summary, the infection assays, proteomic and transcriptomic data described in this study indicate that both MTC and GABA biosynthesis play an important role in pathogenic interaction between R. solanacearum and tomato plants.


Assuntos
Metionina/metabolismo , Doenças das Plantas/imunologia , Proteoma , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/imunologia , Transcriptoma , Ácido gama-Aminobutírico/metabolismo , Resistência à Doença , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Proteômica
17.
Int J Mol Sci ; 19(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522465

RESUMO

Anthocyanins are the main pigments in flowers and fruits. These pigments are responsible for the red, red-purple, violet, and purple color in plants, and act as insect and animal attractants. In this study, phenotypic analysis of the purple flower color in eggplant indicated that the flower color is controlled by a single dominant gene, FAS. Using an F2 mapping population derived from a cross between purple-flowered 'Blacknite' and white-flowered 'Small Round', FlowerAnthocyanidin Synthase (FAS) was fine mapped to an approximately 165.6-kb region between InDel marker Indel8-11 and Cleaved Amplified Polymorphic Sequences (CAPS) marker Efc8-32 on Chromosome 8. On the basis of bioinformatic analysis, 29 genes were subsequently located in the FAS target region, among which were two potential Anthocyanidin Synthase (ANS) gene candidates. Allelic sequence comparison results showed that one ANS gene (Sme2.5_01638.1_g00003.1) was conserved in promoter and coding sequences without any nucleotide change between parents, whereas four single-nucleotide polymorphisms were detected in another ANS gene (Sme2.5_01638.1_g00005.1). Crucially, a single base pair deletion at site 438 resulted in premature termination of FAS, leading to the loss of anthocyanin accumulation. In addition, FAS displayed strong expression in purple flowers compared with white flowers and other tissues. Collectively, our results indicate that Sme2.5_01638.1_g00005.1 is a good candidate gene for FAS, which controls anthocyanidin synthase in eggplant flowers. The present study provides information for further potential facilitate genetic engineering for improvement of anthocyanin levels in plants.


Assuntos
Antocianinas/metabolismo , Flores/metabolismo , Oxigenases/genética , Proteínas de Plantas/genética , Solanum melongena/fisiologia , Alelos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Engenharia Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Solanum melongena/genética
18.
Plant Reprod ; 31(3): 203-211, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29399717

RESUMO

KEY MESSAGE: Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.


Assuntos
Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo
19.
Int J Mol Sci ; 18(6)2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629176

RESUMO

To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.


Assuntos
Aminoácidos Essenciais/biossíntese , Aminoácidos Essenciais/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Vias Biossintéticas/genética , Cruzamento , Produtos Agrícolas/enzimologia , Alimentos Fortificados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Engenharia Genética , Valor Nutritivo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
20.
Front Plant Sci ; 7: 1399, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703462

RESUMO

Eukaryotic translation initiation factor 3 (eIF3) is a large protein complex that participates in most translation initiation processes. While eIF3 has been well characterized, less is known about the roles of individual eIF3 subunits, particularly in plants. Here, we identified and characterized OseIF3e in rice (Oryza sativa L.). OseIF3e was constitutively expressed in various tissues, but most strongly in vigorously growing organs. Transgenic OseIF3e-silenced rice plants showed inhibited growth in seedling and vegetative stages. Repression of OseIF3e led to defects in pollen maturation but did not affect pollen mitosis. In rice, eIF3e interacted with eIF3 subunits b, d, e, f, h, and k, and with eIF6, forming homo- and heterodimers to initiate translation. Furthermore, OseIF3e was shown by yeast two-hybrid assay to specifically bind to inhibitors of cyclin-dependent kinases 1, 5, and 6. This interaction was mediated by the sequence of amino acid residues at positions 118-138, which included a conserved motif (IGPEQIETLYQFAKF). These results suggested although OseIF3e is not a "functional core" subunit of eIF3, it still plays crucial roles in rice growth and development, in combination with other factors. We proposed a pathway by which OseIF3e influence organ size and pollen maturation in rice, providing an opportunity to optimize plant architecture for crop breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA