Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308424, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081800

RESUMO

The rapid, simultaneous, and accurate identification of multiple non-nucleic acid targets in clinical or food samples at room temperature is essential for public health. Argonautes (Agos) are guided, programmable, target-activated, next-generation nucleic acid endonucleases that could realize one-pot and multiplexed detection using a single enzyme, which cannot be achieved with CRISPR/Cas. However, currently reported thermophilic Ago-based multi-detection sensors are mainly employed in the detection of nucleic acids. Herein, this work proposes a Mesophilic Argonaute Report-based single millimeter Polystyrene Sphere (MARPS) multiplex detection platform for the simultaneous analysis of non-nucleic acid targets. The aptamer is utilized as the recognition element, and a single millimeter-sized polystyrene sphere (PSmm ) with a large concentration of guide DNA on the surface served as the microreactor. These are combined with precise Clostridium butyricum Ago (CbAgo) cleavage and exonuclease I (Exo I) signal amplification to achieve the efficient and sensitive recognition of non-nucleic acid targets, such as mycotoxins (<60 pg mL-1 ) and pathogenic bacteria (<102 cfu mL-1 ). The novel MARPS platform is the first to use mesophilic Agos for the multiplex detection of non-nucleic acid targets, overcoming the limitations of CRISPR/Cas in this regard and representing a major advancement in non-nucleic acid target detection using a gene-editing-based system.

2.
J Am Soc Mass Spectrom ; 34(12): 2680-2690, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983183

RESUMO

Cooking oil fumes are an intricate and dynamic mixture containing a variety of poisonous and hazardous substances, and their real-time study remains challenging. Based on tunable synchrotron radiation photoionization mass spectrometry (SR-PIMS), isomeric/isobaric compounds in the gaseous oil fumes from oleic acid thermal oxidation were determined in real time and distinguished by photoionization efficiency (PIE) curve simulation combined with multiple linear regression (MLR) analysis. A series of common carcinogens such as formaldehyde, acetaldehyde, acrolein, and several unreported chemicals including diethyl ether and formylcyclohexane were successfully characterized. Moreover, time-resolved profiles of certain components in gaseous oil fumes were monitored for 55 h. Distinct evolutionary processes were observed, indicating the consumption and formation of parent molecules, intermediates, and final products.

3.
Rapid Commun Mass Spectrom ; 37(21): e9634, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37799030

RESUMO

RATIONALE: Cooking oil fumes contain numerous hazardous and carcinogenic chemicals, posing potential threats to human health. However, the sources of these species remain ambiguous, impeding health risk assessment, pollution control and mechanism research. METHODS: To address this issue, the thermal oxidation of three common unsaturated fatty acids (UFAs), namely oleic, linoleic and linolenic acids, present in vegetable oils was investigated. The volatile and semi-volatile products were comprehensively characterized by online synchrotron radiation photoionization mass spectrometry (SR-PIMS) with two modes, which were validated and complemented using offline gas chromatography (GC)/MS methods. Tunable SR-PIMS combined with photoionization efficiency curve simulation enabled the recognition of isomers/isobars in gaseous fumes. RESULTS: SR-PIMS revealed over 100 products, including aldehydes, alkenes, furans, aromatic hydrocarbons, etc., such as small molecules of formaldehyde, acetaldehyde, acrolein, ethylene and furan, which are not readily detected by conventional GC/MS; and some unreported fractions, e.g. ketene, 4-ethylcyclohexene and cycloundecene(E), were also observed. Furthermore, real-time monitoring of product emissions during the thermal oxidation of the three UFAs via SR-PIMS revealed that linolenic acid may be the major source of acrolein. CONCLUSION: SR-PIMS has been demonstrated as a powerful technique for online investigation of cooking oil fumes. This study achieved comprehensive characterization of volatile and semi-volatile products from the thermal oxidation of oleic, linoleic and linolenic acids, facilitating the traceability of species in cooking fumes and aiding in exploring the thermal reactions of different vegetable oils.


Assuntos
Acroleína , Ácidos Linolênicos , Humanos , Acroleína/análise , Ácidos Graxos/química , Síncrotrons , Óleos de Plantas , Ácidos Graxos Insaturados , Espectrometria de Massas
4.
Anal Chem ; 94(43): 15108-15116, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201321

RESUMO

Plant metabolites exhibit a variety of different chemical properties, physiological activities, and biological functions. However, untargeted imaging of highly diverse metabolic profiles is still a great challenge. Here, metabolites in plant leaves were imaged via imprint, followed by desorption electrospray ionization/post-photoionization (imprint DESI/PI) mass spectrometry imaging. In contrast to the traditional imprint DESI method, quite a few metabolites, such as terpenoids, flavonoids, glycosides, alkylphenols, amino acids, phenolic acids, tannins, and lipids, in fresh sage leaves, ginkgo leaves, and tea leaves were well detected and imaged by imprint DESI/PI. More than 80 metabolites were additionally identified, and more than 1 order of magnitude higher signal intensities were obtained for most metabolites in the negative ion mode. By virtue of the significant improvement of coverage and sensitivity of PI, the catechin biosynthesis network in fresh tea leaves could be clearly illustrated, indicating the potential applicability of imprint DESI/PI in exploring the sites and pathways of plant metabolic conversion.


Assuntos
Folhas de Planta , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Folhas de Planta/química , Metaboloma , Flavonoides/análise , Plantas , Chá/metabolismo
5.
J Phys Chem Lett ; 13(30): 6875-6882, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35861849

RESUMO

Unravelling the generation of complex organic molecules (COMs) on interstellar nanoparticles (grains) is essential in establishing predictive astrochemical reaction networks and recognizing evolution stages of molecular clouds and star-forming regions. The formation of COMs has been associated with the irradiation of interstellar ices by ultraviolet photons and galactic cosmic rays. Herein, we pioneer the first incorporation of synchrotron vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry (SVUV-PI-ReTOF-MS) in laboratory astrophysics simulation experiments to afford an isomer-selective identification of key COMs (ketene (H2C═CO); acetaldehyde (CH3CHO); vinyl alcohol (H2C═CHOH)) based on photoionization efficiency (PIE) curves of molecules desorbing from exposed carbon monoxide-methane (CO-CH4) ices. Our results demonstrate that the SVUV-PI-ReTOF-MS approach represents a versatile, rapid methodology for a comprehensive identification and explicit understanding of the complex organics produced in space simulation experiments. This methodology is expected to significantly improve the predictive nature of astrochemical models of complex organic molecules formed abiotically in deep space, including biorelated species linked to the origins-of-life topic.


Assuntos
Metano , Síncrotrons , Monóxido de Carbono/química , Espectrometria de Massas , Metano/química
6.
Environ Sci Pollut Res Int ; 29(58): 88256-88268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35831648

RESUMO

γ-Fe2O3 has an excellent low-temperature selective catalytic reduction (SCR) deNOx performance, but its resistance to alkaline earth metal calcium (Ca) is poor. In particular, the detailed mechanism of Ca poisoning on the γ-Fe2O3 catalyst at the atomic level is not clear. Hence, the density functional theory method was used in this research to investigate the influence mechanism of Ca poisoning on the NH3-SCR over the γ-Fe2O3 catalyst surface. The findings reveal that NH3, NO, and O2 molecules can bind to the γ-Fe2O3 (001) surface to generate coordinated ammonia, monodentate nitroso, and adsorption oxygen species, respectively. The main active site is Fe1-top. For the γ-Fe2O3 with Ca poisoning, the Ca atom has a high adsorption energy on the surface of γ-Fe2O3 (001), which covers the catalyst surface and reduces the active sites. The presence of Ca atom decreases the adsorption performance of NH3, while slightly improving the NO and O2 adsorption. In particular, the Ca atom restrains the NH3 activation and NH2 formation, which is detrimental to the NH3-SCR process.

7.
J Mass Spectrom ; 57(3): e4813, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35189674

RESUMO

Desorption electrospray ionization/post-photoionization (DESI/PI) is a newly developed ionization method by the combination of DESI and post-photoionization for the simultaneous imaging of polar and nonpolar compounds in biological tissues. Dopants are of great importance in DESI/PI for the enhancement of signal intensities through ion-molecule reactions. In this work, to evaluate the performance of dopants in DESI/PI, an efficient homogenate model was developed, and four kinds of dopants (toluene, chlorobenzene, bromobenzene, and anisole) were tested using homogenate of mouse brain tissue as target sample. The influences of the dopants on the signal enhancements of different compounds were explained reasonably by the ionization mechanism. Then, the dopants with their optimum volume contents were applied to the mass spectrometry imaging (MSI). For a comprehensive imaging of various compounds with different polarities, methanol/toluene/formic acid (7:3:0.1) was chosen as the best choice. Finally, the stronger quantitative ability of DESI/PI with toluene as dopant for a few compounds in mouse brain tissue was demonstrated.

8.
J Am Soc Mass Spectrom ; 32(6): 1402-1411, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961425

RESUMO

Online monitoring of the volatile compounds during the tea roasting process is crucial to find the optimum roasting conditions and improve the quality of green tea. In this work, synchrotron radiation photoionization mass spectrometry (SR-PIMS) was utilized to online monitor the evolved gaseous compounds during the tea roasting process. By virtue of "soft" ionization and fast data acquisition characteristics of SR-PIMS, dozens of aroma compounds including alcohols, aldehydes, furans, and nitrogen- and sulfur-containing species were detected and identified in real time. Moreover, 5-hydroxymethylfurfural (5-HMF), the key intermediate of Maillard reactions, was found with high sensitivity. Evolution processes of all the products could be observed via the time- and temperature-resolved profiles in N2 and the air. Dehydration was found to be the first step during roasting. Oxygen in the air was found to accelerate the formation rate of various stable species and intermediates in the course of the thermal treatment of fresh green tea. The formation mechanisms of evolved compounds such as three sulfur-containing compounds, i.e., dimethyl sulfide, hydrogen sulfide, and methanethiol, could be proposed according to the step-by-step formation process. The time-resolved results were demonstrated to be applicable in the evaluation of different roasting processes by statistical analysis. The optimum tea roasting temperature and duration are proposed to be around 200 °C and 1000 s.

9.
J Hazard Mater ; 416: 125798, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862481

RESUMO

Activated carbon supported iron-based catalysts (FexOy/AC) show good deNOx efficiency at low temperature. The doping of chromium (Cr) greatly improves the catalyst activity. However, the detailed effect of doping Cr over FexOy/AC surface at molecular level is still a grey area. In this study, the roles of Cr dopant on gas adsorption and NO oxidation were deeply investigated by a DFT-D3 method. Results show that the synergy of Cr-Fe bimetal improves the binding capacity of Fe2O3/AC and Fe3O4/AC surfaces after doping Cr. NH3 can be adsorbed on Cr and Fe sites to form coordinated NH3. Doping Cr greatly improves the NH3 adsorption property on the Fe3O4/AC surface. NO molecule can combine with Cr, Fe, and O sites to form nitrosyl and nitrite. The doping of Cr increases the adsorption performance of NO on the Fe2O3/AC and Fe3O4/AC surfaces, especially for Fe3O4/AC surface. Furthermore, NO can be oxidized to NO2 by adsorption oxygen or active O sites of FexOy clusters. The doping of Cr restrains the formation of insoluble chelating bidentate nitrates and greatly reduces the reaction energy barrier of NO oxidation on the FexOy/AC surface, which can promote the deNOx reaction.

10.
J Phys Chem A ; 125(9): 1949-1957, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651613

RESUMO

The pyrolysis of chlorobenzene (C6H5Cl) at 760 Torr was studied in the temperature range of 873-1223 K. The pyrolysis products including intermediates and chlorinated aromatics were detected and quantified via synchrotron radiation photoionization mass spectrometry. Furthermore, the photoionization cross sections of chlorobenzene were experimentally measured. On the basis of the experimental results, the decomposition pathways of chlorobenzene were discussed as well as the generation and consumption pathways of the main products. Benzene is the main product of chlorobenzene pyrolysis. Chlorobiphenyl (C12H9Cl), dichlorobiphenyl (C12H8Cl2), and chlorotriphenylene (C18H11Cl) predominated in trace chlorinated aromatic products. Chlorobenzene decomposed initially to form two radicals [chlorophenyl (·C6H4Cl) and phenyl (·C6H5)] and the important intermediate o-benzyne (o-C6H4). The propagation processes of chlorinated aromatics, including polychlorinated naphthalenes and polychlorinated biphenyls, were mainly triggered by chlorobenzene, chlorophenyl, and benzene via the even-numbered-carbon growth mechanism. Besides, the small-molecule products such as acetylene (C2H2), 1,3,5-hexatriyne (C6H2), and diacetylene (C4H2) were formed via the bond cleavage of o-benzyne (o-C6H4).

11.
Arch Oral Biol ; 114: 104717, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32344357

RESUMO

BACKGROUND: Programmed death ligand-1 (PD-L1) expression is related to the prognosis of many solid tumors; however, its prognostic value in oral squamous cell carcinoma (OSCC) remains unclear. Here, a meta-analysis was performed to estimate the association of PD-L1 expression with prognosis and clinicopathological features in patients with OSCC. METHODS: PubMed, Web of Science, EMBASE, Cochrane Library, and CNKI databases were searched to find relevant studies for identification of the association of PD-L1 expression with clinicopathological features and overall survival (OS) in patients with OSCC. The strength of the association of PD-L1 expression with clinicopathological features and OS in patients with OSCC was assessed according to the relative risk (RR), hazard ratio (HR), and 95% confidence interval CI (CI). RESULT: Twenty-three studies (including 3217 patients with OSCC) were evaluated. The meta-analysis showed that positive PD-L1 expression was significantly correlated with OS in patients with OSCC (HR = 1.00, 95% CI = 0.76-1.30, p = 0.284). Positive PD-L1 expression was significantly correlated with sex (RR = 1.22, 95% CI = 1.07-1.38, p = 0.002), histological differentiation (RR = 1.15, 95% CI = 1.02-1.30, p = 0.020), distant metastasis (RR = 0.68, 95% CI = 0.54-0.86, p = 0.011), lymph node metastasis status (RR = 0.83, 95% CI = 0.76-0.91, p < 0.001), TNM stage (RR = 0.81, 95% CI = 0.73-0.89, p < 0.001), and human papilloma virus infection status (RR = 1.30, 95% CI = 1.04-1.62, p = 0.019), but was not correlated with T stage and tumor recurrence. CONCLUSION: High PD-L1 expression in OSCC was not related to OS. However, high PD-L1 expression was significantly related to certain clinicopathological features. Thus, positive PD-L1 expression may be a biomarker of poor prognosis in patients with OSCC.


Assuntos
Antígeno B7-H1/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Biomarcadores Tumorais , Humanos , Recidiva Local de Neoplasia , Prognóstico
12.
Angew Chem Int Ed Engl ; 59(12): 4873-4878, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31943630

RESUMO

HCHO has been confirmed as an active intermediate in the methanol-to-hydrocarbon (MTH) reaction, and is critical for interpreting the mechanisms of coke formation. Here, HCHO was detected and quantified during the MTH process over HSAPO-34 and HZSM-5 by in situ synchrotron radiation photoionization mass spectrometry. Compared with conventional methods, excellent time-resolved profiles were obtained to study the formation and fate of HCHO, and other products during the induction, steady-state reaction, and deactivation periods. Similar formation trends of HCHO and methane, and their close correlation in yields suggest that they are derived from disproportionation of methanol at acidic sites. In the presence of Y2 O3 , the amount of HCHO changes, affecting the hydrogen-transfer processes of olefins into aromatics and aromatics into cokes. The yield of HCHO affects the aromatic-based cycle and the formation of ethylene, indicating that ethylene is mainly formed from the aromatic-based cycle.

13.
Anal Chem ; 91(10): 6616-6623, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30907581

RESUMO

Desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can simultaneously record the 2D distribution of polar biomolecules in tissue slices at ambient conditions. However, sensitivity of DESI-MSI for nonpolar compounds is restricted by low ionization efficiency and strong ion suppression. In this study, a compact postphotoionization assembly combined with DESI (DESI/PI) was developed for imaging polar and nonpolar molecules in tissue sections by switching off/on a portable krypton lamp. Compared with DESI, higher signal intensities of nonpolar compounds could be detected with DESI/PI. To further increase the ionization efficiency and transport of charged ions of DESI/PI, the desorption solvent composition and gas flow in the ionization tube were optimized. In mouse brain tissue, more than 2 orders of magnitude higher signal intensities for certain neutral biomolecules like creatine, cholesterol, and GalCer lipids were obtained by DESI/PI in the positive ion mode, compared with that of DESI. In the negative ion mode, ion yields of DESI/PI for glutamine and some lipids (HexCer, PE, and PE-O) were also increased by several-fold. Moreover, nonpolar constituents in plant tissue, such as catechins in leaf shoots of tea, could also be visualized by DESI/PI. Our results indicate that DESI/PI can expand the application field of DESI to nonpolar molecules, which is important for comprehensive imaging of biomolecules in biological tissues with moderate spatial resolution at ambient conditions.


Assuntos
Química Encefálica , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Encéfalo/diagnóstico por imagem , Limite de Detecção , Lipídeos/análise , Camundongos , Neurotransmissores/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA