Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Domest Anim Endocrinol ; 88: 106851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733944

RESUMO

Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.


Assuntos
Colostro , Hormônios , Lactação , Animais , Suínos/imunologia , Bovinos/imunologia , Bovinos/fisiologia , Feminino , Lactação/fisiologia , Colostro/imunologia , Colostro/química , Hormônios/fisiologia , Gravidez , Leite/química , Imunoglobulina A Secretora
2.
Viruses ; 16(4)2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675947

RESUMO

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Assuntos
Altitude , Microbioma Gastrointestinal , Metagenômica , Viroma , Animais , Suínos , Viroma/genética , Microbioma Gastrointestinal/genética , Tibet , Vírus/genética , Vírus/classificação , Metagenoma , Feminino , Genoma Viral
3.
Virus Evol ; 10(1): veae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361823

RESUMO

Understanding phylogenetic relationships among species is essential for many biological studies, which call for an accurate phylogenetic tree to understand major evolutionary transitions. The phylogenetic analyses present a major challenge in estimation accuracy and computational efficiency, especially recently facing a wave of severe emerging infectious disease outbreaks. Here, we introduced a novel, efficient framework called Bases-dependent Rapid Phylogenetic Clustering (Bd-RPC) for new sample placement for viruses. In this study, a brand-new recoding method called Frequency Vector Recoding was implemented to approximate the phylogenetic distance, and the Phylogenetic Simulated Annealing Search algorithm was developed to match the recoded distance matrix with the phylogenetic tree. Meanwhile, the indel (insertion/deletion) was heuristically introduced to foreign sequence recognition for the first time. Here, we compared the Bd-RPC with the recent placement software (PAGAN2, EPA-ng, TreeBeST) and evaluated it in Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus by using Split and Robinson-Foulds distances. The comparisons showed that Bd-RPC maintained the highest precision with great efficiency, demonstrating good performance in new sample placement on all three virus genera. Finally, a user-friendly website (http://www.bd-rpc.xyz) is available for users to classify new samples instantly and facilitate exploration of the phylogenetic research in viruses, and the Bd-RPC is available on GitHub (http://github.com/Bin-Ma/bd-rpc).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA