Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6095, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055453

RESUMO

To reconstruct the ancestral genome of a set of phylogenetically related descendant species, we use the RACCROCHE pipeline for organizing a large number of generalized gene adjacencies into contigs and then into chromosomes. Separate reconstructions are carried out for each ancestral node of the phylogenetic tree for focal taxa. The ancestral reconstructions are monoploids; they each contain at most one member of each gene family constructed from descendants, ordered along the chromosomes. We design and implement a new computational technique for solving the problem of estimating the ancestral monoploid number of chromosomes x. This involves a "g-mer" analysis to resolve a bias due long contigs, and gap statistics to estimate x. We find that the monoploid number of all the rosid and asterid orders is [Formula: see text]. We show that this is not an artifact of our method by deriving [Formula: see text] for the metazoan ancestor.


Assuntos
Cromossomos , Evolução Molecular , Animais , Ordem dos Genes , Filogenia , Cromossomos/genética , Genoma , Cariótipo
2.
Nat Commun ; 13(1): 643, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110570

RESUMO

Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors.


Assuntos
Buxus/genética , Genoma de Planta , Magnoliopsida/genética , Buxus/classificação , Evolução Molecular , Genômica , Hibridização Genética , Filogenia , Análise de Sequência de DNA
3.
J Comput Biol ; 28(11): 1156-1179, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34783601

RESUMO

Recurrent whole genome duplication and the ensuing loss of redundant genes-fractionation-complicate efforts to reconstruct the gene orders and chromosomes of the ancestors associated with the nodes of a phylogeny. Loss of genes disrupts the gene adjacencies key to current techniques. With our RACCROCHE pipeline, instead of starting with the inference of short ancestral segments, we suggest delaying the choice of gene adjacencies while we accumulate many more syntenically validated generalized (gapped) adjacencies. We obtain longer ancestral contigs using maximum weight matching (MWM). Similarly, we do not construct chromosomes by successively piecing together contigs into larger segments, but rather compile counts of pairwise contig co-occurrences on the set of extant genomes and use these to cluster the contigs. Chromosome-level contig assemblies for a monoploid genome emerge naturally at each node of the phylogeny and the contigs then can be ordered along the chromosome. Sampling alternative MWM solutions, visualizing heat maps, and applying gap statistics allow us to estimate the number of chromosomes in the reconstruction. We introduce several measures of quality: length of contigs, continuity of contig structure on successive ancestors, coverage of the extant genome by the reconstruction, and rearrangement relations among the inferred chromosomes. The reconstructed ancestors are visualized by painting the ancestral projections on the descendant genomes. We submit genomes drawn from a broad range of monocot orders to our pipeline, confirming the tetraploidization event "tau" in the stem lineage between the alismatids and the lilioids. We show additional applications to the Solanaceae and to four Brassica genomes, producing evidence about the monoploid ancestor in each case.


Assuntos
Biologia Computacional/métodos , Duplicação Gênica , Magnoliopsida/classificação , Algoritmos , Evolução Molecular , Ordem dos Genes , Genoma de Planta , Magnoliopsida/genética , Filogenia
4.
J Bioinform Comput Biol ; 19(6): 2140008, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34806950

RESUMO

Using RACCROCHE, a method for reconstructing gene content and order of ancestral chromosomes from a phylogeny of extant genomes represented by the gene orders on their chromosomes, we study the evolution of three orders of woody plants. The method retrieves the monoploid complement of each Ancestor in a phylogeny, consisting a complete set of distinct chromosomes, despite some of the extant genomes being recently or historically polyploidized. The three orders are the Sapindales, the Fagales and the Malvales. All of these are independently estimated to have ancestral monoploid number [Formula: see text].


Assuntos
Evolução Molecular , Genoma , Cromossomos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA