Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(8): 2619-2628, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586432

RESUMO

Hollow mesoporous silica nanoparticles (HMSNs) served as nanocarriers for transporting doxorubicin hydrochloride (DOX) and indocyanine green (ICG) and were incorporated into a pH-sensitive targeted drug delivery system (DDS). Boronate ester bonds were employed to link HMSNs and dopamine-modified hyaluronic acid (DA-HA), which acted as both the "gatekeeper" and targeting agents (HMSNs-B-HA). Well-dispersed HMSNs-B-HA with a diameter of about 170 nm was successfully constructed. The conclusion was drawn from the in vitro drug release experiment that ICG and DOX (ID) co-loaded nanoparticles (ID@HMSNs-B-HA) with high drug loading efficiency could sustain drug release under acidic conditions. More importantly, in vitro cell experiments perfectly showed that ID@HMSNs-B-HA could well inhibit murine mammary carcinoma (4T1) cells via chemotherapy combined with photodynamic therapy and accurately target 4 T1 cells. In summary, all test results sufficiently demonstrated that the prepared ID@HMSNs-B-HA was a promising nano-DDS for cancer photodynamic combined with chemotherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício
2.
Colloids Surf B Biointerfaces ; 194: 111166, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32521461

RESUMO

In this work, a pH-responsive and tumor targeted multifunctional drug delivery system (RB-DOX@HMSNs-N = C-HA) was designed to realize chemo-photodynamic combination therapy. Hollow mesoporous silica nanoparticles (HMSNs) was served as the host material to encapsulate doxorubicin (DOX) and photosensitizer rose bengal (RB). Hyaluronic acid (HA) was modified on the surface of HMSNs via pH-sensitive Schiff base bonds as gatekeeper as well as targeted agent. Characterization results indicated the successful preparation of HMSNs-N = C-HA with appropriate diameter of 170 nm around and the nanocarriers displayed superior drug loading capacity (15.30 % for DOX and 12.78 % for RB). Notably, the results of in vitro drug release experiments confirmed that the system possessed good pH-sensitivity, which made it possible to release cargoes in slight acid tumor micro-environments. Significantly, the in vitro cell uptake and cytotoxicity assay results fully proved that RB-DOX@HMSNs-N = C-HA could precisely target murine mammary carcinoma (4T1) cells and effectively inhibit tumor cells viability with chemo-photodynamic synergistic therapy. Overall, our work (RB-DOX@HMSNs-N = C-HA) provides an efficient approach for the development of chemo-photodynamic combination therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fotoquimioterapia , Animais , Doxorrubicina/farmacologia , Ácido Hialurônico , Concentração de Íons de Hidrogênio , Camundongos , Porosidade , Dióxido de Silício
3.
ACS Omega ; 2(3): 1249-1258, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023630

RESUMO

In this study, a simple one-pot method was used to prepare a multifunctional platform for synergistic chemo- and photothermal therapy,, which is composed of zeolitic imidazolate framework-8 (ZIF-8) as drug nanocarriers and the embedded graphene quantum dots (GQDs) as local photothermal seeds. The structure, drug release behavior, photothermal effect, and synergistic therapeutic efficiency of the ZIF-8/GQD nanoparticles were systematically investigated. Using doxorubicin (DOX) as a model anticancer drug, the results showed that monodisperse ZIF-8/GQD nanoparticles with a particle size of 50-100 nm could encapsulate DOX during the synthesis procedure and trigger DOX release under acidic conditions. The DOX-loaded ZIF-8/GQD nanoparticles could efficiently convert near-infrared (NIR) irradiation into heat and thereby increase the temperature. More importantly, with breast cancer 4T1 cells as a model cellular system, the results indicated that the combined chemo- and photothermal therapy with DOX-ZIF-8/GQD nanoparticles exhibited a significant synergistic effect, resulting in a higher efficacy to kill cancer cells compared with chemotherapy and photothermal therapy alone. Hence, ZIF-8/GQD nanoparticles would be promising as versatile nanocarriers for synergistic cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA