Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0003124, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488369

RESUMO

Chryseobacterium sp. MHB01, Rhodococcus qingshengii MHB02, and Agrobacterium tumefaciens MHB03 were isolated from superabsorbent polymer granules cultured with an arbuscular mycorrhizal fungus. Whole-genome sequencing of these three strains revealed genome sizes of 4.57 Mb, 7.13 Mb, and 5.49 Mb with G + C contents of 36.9%, 62.5%, and 58.2%, respectively.

2.
Plant Dis ; 108(6): 1869-1878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345539

RESUMO

Bacterial leaf streak and black chaff diseases of wheat caused by Xanthomonas translucens pv. undulosa is becoming a major constraint to growers and trade since it is seedborne. Molecular tools for specific detection/differentiation of pv. undulosa are lacking. We report the development of a TaqMan real-time PCR for specific detection/identification of pv. undulosa targeting the recombination mediator gene (recF). Analysis of the complete recF (1,117 bp) sequences identified the gene as a reliable phylogenetic marker for identification of pv. undulosa, differentiating it from the other pathovars; recF-based sequence homology values among the 11 pathovars correlated well with genome-based DNA-DNA hybridization values. The discriminatory power of recF to differentiate pv. undulosa from the other pathovars is due to nucleotide polymorphic positions. We used these nucleotide polymorphisms to develop a TaqMan PCR for specific detection of pv. undulosa. The specificity of the assay was validated using 67 bacterial and fungal/oomycete strains. The selected primers and the double-quenched FAM-labeled TaqMan probe were specific for the detection of 11 pv. undulosa/secalis strains. The 56 strains of other X. translucens pathovars (n = 39) and non-Xanthomonas spp. (n = 17) did not exhibit any detectable fluorescence. Also, greenhouse-inoculated and naturally infected wheat leaf samples showed positive reactions for the presence of pv. undulosa DNA but not healthy control plants. The TaqMan assay reliably detected as low as 1-pg DNA amount and 10 colony forming units of the target pathogen per reaction. This TaqMan assay could be useful to regulatory agencies with economic benefits to wheat growers.


Assuntos
Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Triticum , Xanthomonas , Xanthomonas/genética , Xanthomonas/isolamento & purificação , Xanthomonas/classificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triticum/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Filogenia , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-37326615

RESUMO

Four bacterial strains (S1Bt3, S1Bt7, S1Bt30 and S1Bt42T) isolated from soil collected from the rhizosphere of a native legume, Amphicarpaea bracteata, were investigated using a polyphasic approach. Colonies were fluorescent, white-yellowish, circular and convex with regular margins on King's B medium. Cells were Gram-reaction-negative, aerobic, non-spore-forming rods. Oxidase- and catalase-positive. The optimal growth temperature of the strains was 37 °C. Phylogenetic analysis of the 16S rRNA gene sequences placed the strains within the genus Pseudomonas. Analysis of the 16S rRNA-rpoD-gyrB concatenated sequences clustered the strains and well separated from Pseudomonas rhodesiae CIP 104664T and Pseudomonas grimontii CFM 97-514T with the type strains of the closest species. Phylogenomic analysis of 92 up-to-date bacterial core gene and matrix-assisted laser desorption/ionization-time-of-flight MS biotyper data confirmed the distinct clustering pattern of these four strains. Digital DNA-DNA hybridization (41.7 %-31.2 %) and average nucleotide identity (91.1 %-87.0 %) values relative to closest validly published Pseudomonas species were below the species delineation thresholds of 70 and 96 %, respectively. Fatty acid composition results validated the taxonomic position of the novel strains in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests differentiated the novel strains from closely related Pseudomonas species. In silico prediction of secondary metabolite biosynthesis gene clusters in the whole-genome sequences of the four strains revealed the presence of 11 clusters involved in the production of siderophore, redox-cofactor, betalactone, terpene, arylpolyene and nonribosomal peptides. Based on phenotypic and genotypic data, strains S1Bt3, S1Bt7, S1Bt30 and S1Bt42T represent a novel species for which the name Pseudomonas quebecensis sp. nov. is proposed. The type strain is S1Bt42T (=DOAB 746T=LMG 32141T=CECT 30251T). The genomic DNA G+C content is 60.95 mol%.


Assuntos
Fabaceae , Fabaceae/microbiologia , Quebeque , Solo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Pseudomonas , Hibridização de Ácido Nucleico
4.
Phytopathology ; 113(11): 2091-2102, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37097305

RESUMO

The reemergence and spread of Xanthomonas translucens, the causal agent of bacterial leaf streak in cereal crops and wilt in turfgrass and forage species, is a concern to growers in the United States and Canada. The pathogen is seedborne and listed as an A2 quarantine organism by EPPO, making it a major constraint to international trade and exchange of germplasm. The pathovar concept of the X. translucens group is confusing due to overlapping of plant host ranges and specificity. Here, comparative genomics, phylogenomics, and 81 up-to-date bacterial core gene set (ubcg2) were used to assign the pathovars of X. translucens into three genetically and taxonomically distinct clusters. The study also showed that whole genome-based digital DNA-DNA hybridization unambiguously can differentiate the pvs. translucens and undulosa. Orthologous gene and proteome matrix analyses suggest that the cluster consisting of graminis, poae, arrhenatheri, phlei, and phleipratensis is very divergent. Whole-genome data were exploited to develop the first pathovar-specific TaqMan real-time PCR tool for detection of pv. translucens on barley. Specificity of the TaqMan assay was validated using 62 Xanthomonas and non-Xanthomonas strains as well as growth chamber-inoculated and naturally infected barley leaves. Sensitivity levels of 0.1 pg (purified DNA) and 23 CFUs per reaction (direct culture) compared favorably with other previously reported real-time PCR assays. The phylogenomics data reported here suggest that the clusters could constitute novel taxonomic units or new species. Finally, the pathovar-specific diagnostic tool will have significant benefits to growers and facilitate international exchange of barley germplasm and trade.


Assuntos
Hordeum , Xanthomonas , Hordeum/microbiologia , Filogenia , Comércio , Doenças das Plantas/microbiologia , Internacionalidade , Xanthomonas/genética , DNA
6.
Plant Dis ; 106(6): 1558-1565, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35100028

RESUMO

Bacterial spot disease caused by Xanthomonas spp. is a global threat to tomato and pepper plants. A recent classification of these pathogens indicated the need for a diverse dataset of whole-genome resources. We report whole-genome resources of 89 Xanthomonas strains isolated from Canada (n = 44), the United States (n = 29), Argentina (n = 4), Brazil (n = 3), Costa Rica (n = 3), New Zealand (n = 1), Australia (n = 1), Mexico (n = 1), Taiwan (n = 1), Thailand (n = 1), and unknown (n = 1). Of these strains, 48 were previously identified to species-level based on nongenome-based approaches while 41 strains were classified only at the genus level. The average coverage of the sequencing reads was 103×. The draft genome sizes ranged from 4.53 to 5.46 Mbp with a G + C content of 63.53 to 67.78% and comprised 4,233-5,178 protein-coding sequences. Using average nucleotide identity (ANI) and genome-based DNA-DNA hybridization (gDDH) values, the taxonomic classifications were validated for 38 of the 48 strains previously assigned to species level using other methods. Ten strains previously identified as Xanthomonas campestris, X. axonopodis, X. vasicola, and X. arboricola were incorrectly assigned, and new species-level delineations are proposed. Data from ANI, gDDH, and pangenome phylogeny of shared protein families were used to assign the 41 strains, previously identified only to genus level, into five distinct species: X. euvesicatoria (pv. euvesicatoria or pv. perforans), X. hortorum pv. gardneri, X. vesicatoria, X. campestris, and X. arboricola. These 89 whole-genome sequences of Xanthomonas strains, the majority (49.4%) of which are from Canada, could be useful resources in our understanding of the global population structure and evolution of these pathogens.


Assuntos
Solanum lycopersicum , Xanthomonas , Genoma Bacteriano/genética , Solanum lycopersicum/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Estados Unidos
8.
Front Microbiol ; 12: 666689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093484

RESUMO

Xanthomonas translucens is the etiological agent of the wheat bacterial leaf streak (BLS) disease. The isolation of this pathogen is usually based on the Wilbrink's-boric acid-cephalexin semi-selective medium which eliminates 90% of other bacteria, some of which might be novel species. In our study, a general purpose nutrient agar was used to isolate 49 bacterial strains including X. translucens from necrotic wheat leaf tissues. Maximum likelihood cluster analysis of 16S rRNA sequences grouped the strains into 10 distinct genera. Pseudomonas (32.7%) and Pantoea (28.6%) were the dominant genera while Xanthomonas, Clavibacter and Curtobacterium had 8.2%, each. Erwinia and Sphingomonas had two strains, each. BLAST and phylogenetic analyses of multilocus sequence analysis (MLSA) of specific housekeeping genes taxonomically assigned all the strains to validly described bacterial species, except three strains (10L4B, 12L4D and 32L3A) of Pseudomonas and two (23L3C and 15L3B) of Sphingomonas. Strains 10L4B and12L4D had Pseudomonas caspiana as their closest known type strain while strain 32L3A was closest to Pseudomonas asturiensis. Sphingomonas sp. strains 23L3C and 15L3B were closest to S. faeni based on MLSA analysis. Our data on MLSA, whole genome-based cluster analysis, DNA-DNA hybridization and average nucleotide identity, matrix-assisted laser desorption/ionization-time-of-flight, chemotaxonomy and phenotype affirmed that these 5 strains constitute three novel lineages and are taxonomically described in this study. We propose the names, Sphingomonas albertensis sp. nov. (type strain 23L3CT = DOAB 1063T = CECT 30248T = LMG 32139T), Pseudomonas triticumensis sp. nov. (type strain 32L3AT = DOAB 1067T = CECT 30249T = LMG 32140T) and Pseudomonas foliumensis sp. nov. (type strain 10L4BT = DOAB 1069T = CECT 30250T = LMG 32142T). Comparative genomics of these novel species, relative to their closest type strains, revealed unique repertoires of core secretion systems and secondary metabolites/antibiotics. Also, the detection of CRISPR-Cas systems in the genomes of these novel species suggests an acquired mechanism for resistance against foreign mobile genetic elements. The results presented here revealed a cohabitation, within the BLS lesions, of diverse bacterial species, including novel lineages.

9.
PLoS One ; 16(1): e0245333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481876

RESUMO

The Goss's bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss's bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.


Assuntos
Clavibacter/genética , Sequenciamento por Nanoporos/métodos , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Proteínas de Bactérias/genética , Clavibacter/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Transporte de Nucleobases/genética , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética
10.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703837

RESUMO

We report whole-genome sequences of two new Pantoea strains (DOAB1048 and DOAB1050) isolated from necrotic wheat leaves caused by Xanthomonas translucens The draft genome sequences of DOAB1048 and DOAB1050 consist of 52 and 57 scaffolds and have sizes of 4,795,525 bp and 4,962,883 bp with 4,418 and 4,517 coding sequences, respectively.

11.
Plant Dis ; 103(12): 3031-3040, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638863

RESUMO

Bacterial diseases of onion are reported to cause significant economic losses. Pantoea allii Brady, one of the pathogens causing the center rot on onions, has not yet been reported in Canada. We report the pathogenicity of P. allii on commercially available Canadian green onions (scallions). All P. allii-inoculated plants, irrespective of the inoculum concentration, exhibited typical leaf chlorotic discoloration on green onion leaves, which can reduce their marketability. Reisolation of P. allii from infected scallion tissues and reidentification by sequencing and phylogenetic analyses of the leuS gene suggest that the pathogen can survive in infected tissues 21 days after inoculation. This is the first report of P. allii as a potential pathogen of green onions. This study also reports the development and validation of a TaqMan real-time PCR assay targeting the leuS gene for reliable detection of P. allii in pure cultures and in planta. A 642-bp leuS gene fragment was targeted because it showed high nucleotide diversity and positively correlated with genome-based average nucleotide identity with respect to percent similarity index and identity of Pantoea species. The assay specificity was validated using 61 bacterial and fungal strains. Under optimal conditions, the selected primers and FAM-labeled TaqMan probe were specific for the detection of nine reference P. allii strains by real-time PCR. The 52 strains of other Pantoea spp. (n = 25), non-Pantoea spp. (n = 20), and fungi/oomycetes (n = 7) tested negative (no detectable fluorescence). Onion tissues spiked with P. allii, naturally infested onion bulbs, greenhouse infected green onion leaf samples, as well as an interlaboratory blind test were used to validate the assay specificity. The sensitivities of a 1-pg DNA concentration and 30 CFU are comparable to previously reported real-time PCR assays of other bacterial pathogens. The TaqMan real-time PCR assay developed in this study will facilitate reliable detection of P. allii and could be a useful tool for screening onion imports or exports for the presence of this pathogen.


Assuntos
Agricultura , Cebolas , Pantoea , Reação em Cadeia da Polimerase em Tempo Real , Agricultura/métodos , Canadá , Genes Bacterianos/genética , Cebolas/microbiologia , Pantoea/classificação , Pantoea/genética , Pantoea/patogenicidade , Filogenia , Virulência
12.
Heliyon ; 4(8): e00761, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30186983

RESUMO

Bacteria associated with corn roots inoculated with soils collected from the Canadian woodlands were isolated and characterized. Genus-level identification based on 16S rRNA sequence analysis classified the 161 isolates in 19 genera. The majority (64%) of the isolates were affiliated with the genus Pseudomonas. Further analysis of the Pseudomonas isolates based on BLASTn and rpoD-rpoB-gyrB concatenated gene phylogeny revealed three unique clusters that could not be assigned to known species. This study reports the taxonomic description of one of the distinct lineages represented by two strains (S1E40T and S1E44) with P. lurida LMG 21995T, P. costantinii LMG 22119T, P. palleroniana LMG 23076T, P. simiae CCUG 50988T and P. extremorientalis LMG 19695T as the closest taxa. Both strains showed low ANIm (<90%) and genome-based DNA-DNA hybridization (<50%) values, which unequivocally delineated the new strains from the closest relatives. These findings were supported by multilocus sequence analysis (MLSA) and DNA fingerprinting. In addition, growth characteristics and biochemical tests revealed patterns that differed from the related species. Strains S1E40T and S1E44 are Gram-negative, aerobic, rod-shaped and motile by at least one flagellum; and grew optimally at 30 °C. The predominant polar lipid is phosphatidylethanolamine while the major respiratory quinone is ubiquinone-9. Based on phenotypic and genotypic data presented here, strains S1E40T and S1E44 represent a novel species for which the name Pseudomonas aylmerense sp. nov. is proposed. The type strain is S1E40T (= LMG 30784T = DOAB 703T = HAMI 3696T) with a G + C content of 61.6%.

13.
Microbiologyopen ; 7(2): e00553, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29464939

RESUMO

Multilocus sequence analysis (MLSA) of two new biological control strains (S1E40 and S3E12) of Pseudomonas was performed to assess their taxonomic position relative to close lineages, and comparative genomics employed to investigate whether these strains differ in key genetic features involved in hypersensitivity responses (HRs). Strain S3E12, at high concentration, incites HRs on tobacco and corn plantlets while S1E40 does not. Phylogenies based on individual genes and 16S rRNA-gyrB-rpoB-rpoD concatenated sequence data show strains S1E40 and S3E12 clustering in distinct groups. Strain S3E12 consistently clustered with Pseudomonas marginalis, a bacterium causing soft rots on plant tissues. MLSA data suggest that strains S1E40 and S3E12 are novel genotypes. This is consistent with the data of genome-based DNA-DNA homology values that are below the proposed cutoff species boundary. Comparative genomics analysis of the two strains revealed major differences in the type III secretion systems (T3SS) as well as the predicted T3SS secreted effector proteins (T3Es). One nonflagellar (NF-T3SS) and two flagellar T3SSs (F-T3SS) clusters were identified in both strains. While F-T3SS clusters in both strains were relatively conserved, the NF-T3SS clusters differed in the number of core components present. The predicted T3Es also differed in the type and number of CDSs with both strains having unique predicted protease-related effectors. In addition, the T1SS organization of the S3E12 genome has protein-coding sequences (CDSs) encoding for key factors such as T1SS secreted agglutinin repeats-toxins (a group of cytolysins and cytotoxins), a membrane fusion protein (LapC), a T1SS ATPase of LssB family (LapB), and T1SS-associated transglutaminase-like cysteine proteinase (LapP). In contrast, strain S1E40 has all CDSs for the seven-gene operon (pelA-pelG) required for Pel biosynthesis but not S3E12, suggesting that biofilm formation in these strains is modulated differently. The data presented here provide an insight of the genome organization of these two phytobacterial strains.


Assuntos
Genoma Bacteriano/genética , Nicotiana/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , Sistemas de Secreção Tipo III/genética , Biofilmes/crescimento & desenvolvimento , DNA Girase/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Flagelos/genética , Tipagem de Sequências Multilocus , Filogenia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Plântula/microbiologia , Análise de Sequência de DNA , Fator sigma/genética
14.
Int J Syst Evol Microbiol ; 67(4): 889-895, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27902304

RESUMO

The bacterial strain 2-92T, isolated from a field plot under long-term (>40 years) mineral fertilization, exhibited in vitro antagonistic properties against fungal pathogens. A polyphasic approach was undertaken to verify its taxonomic status. Strain 2-92T was Gram-reaction-negative, aerobic, non-spore-forming, motile by one or more flagella, and oxidase-, catalase- and urease-positive. The optimal growth temperature of strain 2-92T was 30 °C. 16S rRNA gene sequence analysis demonstrated that the strain is related to species of the genus Pseudomonas. Phylogenetic analysis of six housekeeping genes (dnaA, gyrB, recA, recF, rpoB and rpoD) revealed that strain 2-92T clustered as a distinct and well separated lineage with Pseudomonassimiae as the most closely related species. Polar lipid and fatty acid compositions corroborated the taxonomic position of strain 2-92T in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests could be used to differentiate strain 2-92T from closely related species of the genus Pseudomonas. DNA-DNA hybridization values (wet laboratory and genome-based) and average nucleotide identity data confirmed that this strain represents a novel species. On the basis of phenotypic and genotypic characteristics, it is concluded that this strain represents a separate novel species for which the name Pseudomonas canadensis sp. nov. is proposed, with type strain 2-92T (=LMG 28499T=DOAB 798T). The DNA G+C content is 60.30 mol%.


Assuntos
Agentes de Controle Biológico/isolamento & purificação , Filogenia , Pseudomonas/classificação , Microbiologia do Solo , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fertilizantes , Genes Bacterianos , Minerais , Hibridização de Ácido Nucleico , Ontário , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Genome Announc ; 4(5)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27795242

RESUMO

Two novel Pseudomonas strains (S1E40 and S3E12) isolated from corn roots are antagonistic to Rhizoctonia solani and exhibit differential hypersensitivity reactions on tobacco and corn seedlings. We report here the draft genome sequences of strains S1E40 and S3E12, consisting of 6.98 and 7.06 Mb with 6,150 and 6,129 predicted protein-coding sequences, respectively.

16.
Phytopathology ; 106(12): 1473-1485, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27452898

RESUMO

The reemergence of the Goss's bacterial wilt and blight disease in corn in the United States and Canada has prompted investigative research to better understand the genome organization. In this study, we generated a draft genome sequence of Clavibacter michiganensis subsp. nebraskensis strain DOAB 395 and performed genome and proteome analysis of C. michiganensis subsp. nebraskensis strains isolated in 2014 (DOAB 397 and DOAB 395) compared with the type strain, NCPPB 2581 (isolated over 40 years ago). The proteomes of strains DOAB 395 and DOAB 397 exhibited a 99.2% homology but had 92.1 and 91.8% homology, respectively, with strain NCPPB 2581. The majority (99.9%) of the protein sequences had a 99.6 to 100% homology between C. michiganensis subsp. nebraskensis strains DOAB 395 and DOAB 397, with only four protein sequences (0.1%) exhibiting a similarity <70%. In contrast, 3.0% of the protein sequences of strain DOAB 395 or DOAB 397 showed low homologies (<70%) with the type strain NCPPB 2581. The genome data were exploited for the development of a multiplex TaqMan real-time polymerase chain reaction (PCR) tool for rapid detection of C. michiganensis subsp. nebraskensis. The specificity of the assay was validated using 122 strains of Clavibacter and non-Clavibacter spp. A blind test and naturally infected leaf samples were used to confirm specificity. The sensitivity (0.1 to 1.0 pg) compared favorably with previously reported real-time PCR assays. This tool should fill the current gap for a reliable diagnostic technique.


Assuntos
Genoma Bacteriano/genética , Micrococcaceae/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Zea mays/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Micrococcaceae/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Filogenia , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
Syst Appl Microbiol ; 39(2): 93-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26723853

RESUMO

A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)).


Assuntos
Arcobacter/classificação , Técnicas de Tipagem Bacteriana , Arcobacter/isolamento & purificação , Arcobacter/ultraestrutura , Ácidos Graxos/química , Fezes/microbiologia , Genes Bacterianos , Genoma Bacteriano , Humanos , Análise de Sequência de DNA
18.
Genome Announc ; 3(4)2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26159537

RESUMO

In 2014, the pathogen Clavibacter michiganensis subsp. nebraskensis was isolated from symptomatic corn leaves in Manitoba, Canada. We report the draft genome sequence of C. michiganensis subsp. nebraskensis DOAB 397, consisting of 3.059 Mb with 73.0% G+C content, 2,922 predicted protein-coding sequences, 45 tRNAs, 3 rRNAs, and 37 pseudogenes.

19.
Int J Syst Evol Microbiol ; 65(8): 2709-2716, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25977280

RESUMO

A study was undertaken to determine the prevalence and diversity of species of the genus Arcobacter in pig and dairy cattle manure, which led to the identification of strains AF1440T, AF1430 and AF1581. Initially identified as Arcobacter butzleri based on colony morphology and initial PCR-confirmation tests, analyses of 16S rRNA gene sequences of these strains confirmed that they belonged to the genus Arcobacter and were different from all known species of the genus. The isolates formed a distinct group within the genus Arcobacter based on their 16S rRNA, gyrB, rpoB, cpn60, gyrA and atpA gene sequences and fatty acid profiles. Their unique species status was further supported by physiological properties and DNA-DNA hybridization that allowed phenotypic and genotypic differentiation of the strains from other species of the genus Arcobacter. The isolates were found to be oxidase, catalase and esterase positive and urease negative; they grew well at 30 °C under microaerophilic conditions and produced nitrite and acetoin. Based on their common origin and various physiological properties, it is proposed that the isolates are classified as members of a novel species with the name Arcobacter lanthieri sp. nov. The type strain is AF1440T ( = LMG 28516T = CCUG 66485T); strains AF1430 ( = LMG 28515 = CCUG 66486) and AF1581 ( = LMG 28517 = CCUG 66487) are reference strains.


Assuntos
Arcobacter/classificação , Esterco/microbiologia , Filogenia , Animais , Arcobacter/genética , Arcobacter/isolamento & purificação , Composição de Bases , Bovinos , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Ontário , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
20.
Genome Announc ; 3(1)2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25657286

RESUMO

Pseudomonas simiae 2-36, isolated from a field plot under long-term mineral fertilization, exhibited strong in vitro antagonistic activities against Rhizoctonia solani and Gaeumannomyces graminis. We report here the draft genome sequence of Pseudomonas simiae 2-36, consisting of 6.4 Mbp with a 60.25% G+C content and 5,790 predicted protein-coding sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA