Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 50(1-2): 18-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051449

RESUMO

Herbivorous insects use plant volatiles to locate hosts, find food, and identify oviposition sites to aid survival and reproduction. Plant volatiles not only regulate the synthesis and release of sex pheromones in insects, but also help them in the search and orientation of sources of sex pheromones. However, after prolonged exposure to plant volatiles, the changes mediating the mating behavior of diamondback moth (DBM) [Plutella xylostella (L.) (Lepidoptera: Plutellidae)] are unclear. DBMs treated with allyl isothiocyanate, a volatile from cruciferous vegetables, did not show improved rates of mating with a limited effect on mating rhythm. This treatment inhibited mating behaviors in 3-day-old DBMs and decreased mating duration in 5-day-old DBMs. After prolonged exposure to allyl isothiocyanate, the total mating duration of DBM was not significantly different from that after prolonged exposure to n-hexane (control). The longest mating duration after emergence in DBM after prolonged exposure to allyl isothiocyanate was delayed by 1 day compared with exposure to n-hexane. Prolonged exposure to plant volatiles intensified the response behavior of DBM to sex pheromones. However, the amount of Z11-16: Ald, a major component of the sex pheromone blend exhibited no change in female pheromone glands. Pheromone biosynthesis activating neuropeptide gene (PBAN) was down-regulated in DBMs after prolonged exposure to plant volatiles. These findings suggest that prolonged exposure (6 h) to plant-derived volatiles have little effect on the mating behavior of DBM. This study provides practical guidance for applying phytochemicals in pest control by regulating insect behavior.


Assuntos
Hexanos , Mariposas , Atrativos Sexuais , Animais , Feminino , Mariposas/fisiologia , Atrativos Sexuais/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia
2.
Environ Sci Technol ; 57(43): 16477-16488, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37867432

RESUMO

The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/análise , Ferro , Material Particulado/análise , Aço , Poluentes Atmosféricos/análise , China
3.
Environ Entomol ; 52(1): 1-8, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36445349

RESUMO

The oriental armyworm, Mythimna separata (Walker, 1865) (Lepidoptera: Noctuidae), is a serious global migratory insect pest of grain crops. Although its migratory biology has been studied for a long history, the factors affecting wingbeat frequency (WBF), which is closely related to the flight activity of the insect, remain unclear. In this study, the WBFs of both cultured and migrating moths were tested under different conditions in the laboratory using a stroboscope. The results indicated that age and mating status significantly influenced WBF. One day old adults had the lowest WBF, and unmated females had a significantly higher WBF than that of mated females. In general, the WBF of males was significantly higher than that of female individuals. The WBF decreased gradually with increasing environmental humidity, and WBF had a significant negative binomial regression relationship with temperature change. The WBF of moths that fed on hydromel was much higher than those of the controls that fed on water or without diet. However, wind speed and air pressure had no significant effects on the moth WBF in the test environments. These findings provide a deeper understanding of factors that affect flight ability in M. separata, which will be helpful for developing a regional migratory monitoring and warning system of the pest, such as identifying target insect species based on the WBF from radar observation.


Assuntos
Mariposas , Masculino , Feminino , Animais , Spodoptera , Mariposas/fisiologia , Reprodução , Umidade
4.
J Integr Plant Biol ; 65(3): 772-790, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36354146

RESUMO

Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.


Assuntos
Resistência à Seca , MicroRNAs , Zea mays/genética , Raízes de Plantas/genética , Plântula/genética , MicroRNAs/metabolismo , Clonagem Molecular , Secas
5.
Insects ; 13(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735856

RESUMO

The ability to migrate is an important biological trait of insects, and wingbeat frequency (WBF) is a key factor influencing migratory behavior. The WBF of insects has been shown to be species-specific in previous studies; however, there is scant information on variations in WBF among different taxa of migratory insects. In 2018 and 2019, we investigated the relationship between WBF and 12 morphological variables (e.g., body mass, body length, total wing area, etc.) of the main migratory insects (77 species in 3 orders and 14 families) over the Bohai Sea in China. The WBF of migratory insects was negatively correlated with the 12 morphological variables and varied significantly among orders. In migratory lepidopterans, neuropterans, and odonatans, the ranges of WBF were 6.71-81.28 Hz, 19.17-30.53 Hz, and 18.35-38.01 Hz, respectively. Regression models between WBF and connecting morphological variables were established for these three orders. Our findings revealed the relationship between WBF and morphometrics of migratory insects in Northeast Asia, increased our knowledge on the flight biology of migratory insects, and provided a basis for developing morphological and WBF-based monitoring techniques to identify migrating insects.

6.
Sci Total Environ ; 803: 150016, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525731

RESUMO

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are widely used in outdated electronic and electrical products. In the present study, dust samples from houses, kindergartens, and roads were collected in Guiyu, where informal e-waste recycling activities have been sustained since the 1980s. Haojiang was chosen as a reference site without e-waste pollution. A total of 20 PBDE congeners and 18 PCB congeners was measured. Concentrations of total PBDEs and PCBs in dust samples from Guiyu were significantly higher than those from Haojiang. In Guiyu, kindergarten dust had the highest concentration of PCBs in these three typical environments, whereas the concentration of PBDEs showed no significant difference. Concentrations of PBDEs in Haojiang house dust were found significantly higher than other two environmental dusts. According to the questionnaires, we found that factors such as shoe cabinets, electrical products, and potted plants might affect PBDE and PCB concentrations in house dust. Daily intake of PBDEs and PCBs via dust ingestion was estimated after correction by their house, kindergarten, and road dust concentrations. The mean estimated daily intake (EDI) of PBDEs for Guiyu children was far lower than the oral reference dose recommended by the environmental protection agency (EPA). The Guiyu children seem to have a higher trend of daily intakes of PCBs although their EDIs not being calculated accurately due to the low detection rate. Child exposure to PBDEs via dust ingestion in Guiyu was 36 times higher than those in Haojiang. This indicates that children from e-waste-polluted areas stay in surroundings with heavy burdens of PBDEs, even PCBs. The risk to their health from contaminants is a severe concern.


Assuntos
Resíduo Eletrônico , Bifenilos Policlorados , Criança , Poeira/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Humanos , Bifenilos Policlorados/análise , Medição de Risco
7.
Sci Rep ; 11(1): 13622, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193887

RESUMO

A detailed knowledge on the spatial distribution of pests is crucial for predicting population outbreaks or developing control strategies and sustainable management plans. The diamondback moth, Plutella xylostella, is one of the most destructive pests of cruciferous crops worldwide. Despite the abundant research on the species's ecology, little is known about the spatio-temporal pattern of P. xylostella in an agricultural landscape. Therefore, in this study, the spatial distribution of P. xylostella was characterized to assess the effect of landscape elements in a fine-scale agricultural landscape by geostatistical analysis. The P. xylostella adults captured by pheromone-baited traps showed a seasonal pattern of population fluctuation from October 2015 to September 2017, with a marked peak in spring, suggesting that mild temperatures, 15-25 °C, are favorable for P. xylostella. Geostatistics (GS) correlograms fitted with spherical and Gaussian models showed an aggregated distribution in 21 of the 47 cases interpolation contour maps. This result highlighted that spatial distribution of P. xylostella was not limited to the Brassica vegetable field, but presence was the highest there. Nevertheless, population aggregations also showed a seasonal variation associated with the growing stage of host plants. GS model analysis showed higher abundances in cruciferous fields than in any other patches of the landscape, indicating a strong host plant dependency. We demonstrate that Brassica vegetables distribution and growth stage, have dominant impacts on the spatial distribution of P. xylostella in a fine-scale landscape. This work clarified the spatio-temporal dynamic and distribution patterns of P. xylostella in an agricultural landscape, and the distribution model developed by geostatistical analysis can provide a scientific basis for precise targeting and localized control of P. xylostella.

8.
Sci Total Environ ; 791: 148154, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118658

RESUMO

Children from Guiyu, an electronic waste (e-waste) recycling town, are exposed to trace elements via dust. However, the source, pathways, and influence factors of house dust and the association of house dust with child inflammation in an e-waste recycling area are not well-known. This study investigated dust trace elements in children's living environment and the associations of house dust trace elements with influence factors and child inflammation. A total of 108 dust samples from children's residences, roads, and kindergartens in Guiyu (an exposed area) and Haojiang and Shantou urban areas (reference areas) were collected and analyzed, as well as children's questionnaire data. The Mann-Whitney U test found there were higher trace element concentrations in road dust (Co, Ni, and Cu), kindergarten dust (Al, V, Mn, Co, Ni, and Zn), and house dust (V, Co, Cu, As, and Cd) in Guiyu than in Haojiang and Shantou urban areas (P < 0.05). Our analysis showed that house dust and road dust have similar distribution patterns of trace elements. Spearman's correlations showed close relationships among quantities of trace elements (P < 0.05). Higher trace element concentrations in dust were found in houses that used indoor shoe cabinets and opened windows frequently (P < 0.05). In houses of children with airway inflammation, higher dust Ba concentrations were found (P < 0.05), and if their fathers did not work with e-waste, we found higher dust Pb concentrations (Mann-Whitney U test, P < 0.05). Health assessments showed a high risk of exposure through ingestion and an acceptable risk of exposure through inhalation of dust trace elements for children. However, relationships between airway inflammation and house dust trace elements showed the inhalation risk might be underestimated. This study suggests trace element exposure via dust poses a health risk for children living in e-waste recycling areas.


Assuntos
Resíduo Eletrônico , Metais Pesados , Oligoelementos , Criança , Saúde da Criança , China , Poeira/análise , Resíduo Eletrônico/análise , Exposição Ambiental , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Reciclagem , Medição de Risco
9.
J Exp Bot ; 72(15): 5390-5406, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34104938

RESUMO

C-terminal encoded peptides (CEPs) are peptide hormones which act as mobile signals coordinating important developmental programs. Previous studies have unraveled that CEPs are able to regulate plant growth and abiotic stress via cell-to-cell communication in Arabidopsis and rice; however, little is known about their roles in maize. Here, we examined the spatiotemporal expression pattern of ZmCEP1 and showed that ZmCEP1 is highly expressed in young ears and tassels of maize, particularly in the vascular bundles of ears. Heterologous expression of ZmCEP1 in Arabidopsis results in smaller plants and seed size. Similarly, overexpression of ZmCEP1 in maize decreased the plant and ear height, ear length, kernel size, and 100-kernel weight. Consistently, exogenous application of the synthesized ZmCEP1 peptide to the roots of Arabidopsis and maize inhibited root elongation. Knock-out of ZmCEP1 through CRISPR/Cas9 significantly increased plant and ear height, kernel size and 100-kernel weight. Transcriptome analysis revealed that knock-out of ZmCEP1 up-regulated a subset of genes involved in nitrogen metabolism, nitrate transport, sugar transport and auxin response. Thus, these results provide new insights into the genetic and molecular function of ZmCEP1 in regulating kernel development and plant growth, providing novel opportunities for maize breeding.


Assuntos
Arabidopsis , Zea mays , Regulação da Expressão Gênica de Plantas , Peptídeos , Melhoramento Vegetal , Zea mays/genética
10.
Plant J ; 107(3): 817-830, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34009654

RESUMO

Leaf width (LW) is an important component of plant architecture that extensively affects both light capture during photosynthesis and grain yield, particularly under dense planting conditions. However, the genetic and molecular mechanisms regulating LW remain largely elusive in maize (Zea mays L.). In this study, qLW4a, a major quantitative trait locus controlling LW, was identified in a population constructed with maize inbred lines PH6WC, with wide leaves, and Lin387, with narrow leaves. Map-based cloning revealed that ZmNL4, a kelch-repeat superfamily gene, emerged to be the candidate for qLW4a, and a single-base deletion in the conserved SMC_prok_B domain of ZmNL4 in Lin387 caused a frame shift, leading to premature termination. Consistently, the knockout of ZmNL4 by CRISPR/Cas9 editing significantly reduced the LW, which was attributed to a reduction in the cell number instead of cell size, indicating a role of ZmNL4 in regulating cell division. Transcriptomic comparison of ZmNL4 knockout lines with the wild type B73-329 revealed that ZmNL4 might participate in cell wall biogenesis, asymmetric cell division, metabolic processes, transmembrane transport and response to external stimulus, etc. These results provide insights into the genetic and molecular mechanisms of ZmNL4 in controlling LW and could potentially contribute to optimizing plant architecture for maize breeding.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Zea mays/anatomia & histologia , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimento
11.
Plant Cell ; 32(4): 923-934, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060175

RESUMO

Six subspecies of hexaploid wheat (Triticum aestivum) have been identified, but the origin of Indian dwarf wheat (Triticum sphaerococcum), the only subspecies with round grains, is currently unknown. Here, we isolated the grain-shape gene Tasg-D1 in T sphaerococcum via positional cloning. Tasg-D1 encodes a Ser/Thr protein kinase glycogen synthase kinase3 (STKc_GSK3) that negatively regulates brassinosteroid signaling. Expression of TaSG-D1 and the mutant form Tasg-D1 in Arabidopsis (Arabidopsis thaliana) suggested that a single amino acid substitution in the Thr-283-Arg-284-Glu-285-Glu-286 domain of TaSG-D1 enhances protein stability in response to brassinosteroids, likely leading to formation of round grains in wheat. This gain-of-function mutation has pleiotropic effects on plant architecture and exhibits incomplete dominance. Haplotype analysis of 898 wheat accessions indicated that the origin of T sphaerococcum in ancient India involved at least two independent mutations of TaSG-D1 Our results demonstrate that modest genetic changes in a single gene can induce dramatic phenotypic changes.


Assuntos
Substituição de Aminoácidos/genética , Quinase 3 da Glicogênio Sintase/genética , Sementes/anatomia & histologia , Triticum/anatomia & histologia , Triticum/genética , Sequência de Bases , Brassinosteroides/metabolismo , Clonagem Molecular , Haplótipos/genética , Fenótipo , Mutação Puntual/genética , Transdução de Sinais , Triticum/crescimento & desenvolvimento
12.
Theor Appl Genet ; 132(11): 3047-3062, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399756

RESUMO

KEY MESSAGE: One QTL qLRI4 controlling leaf rolling index on chromosome 4 was finely mapped, and ZmOCL5, a member of the HD-Zip class IV genes, is likely a candidate. Leaf rolling is an important agronomic trait related to plant architecture that can change the light condition and photosynthetic efficiency of the population. Here, we isolated one EMS-induced mutant in Chang7-2 background with extreme abaxial rolling leaf, named abrl1. Histological analysis showed that the increased number and area of bulliform cells may contribute to abaxial rolling leaf in abrl1. The F2 and F2:3 populations derived from Wu9086 with flat leaves and abrl1 were developed to map abrl1. Non-Mendelian segregation of phenotypic variation was observed in these populations and five genomic regions controlling the leaf rolling index (LRI) were identified, which could be due to the phenotypic difference between Chang7-2 and Wu9086. Moreover, one major QTL qLRI4 on chromosome 4 was further validated and finely mapped to a genetic interval between InDel13 and InDel10, with a physical distance of approximately 277 kb using NIL populations, among which one 602-bp insertion was identified in the promoter region of HD-Zip class IV gene Zm00001d049443 (named as ZmOCL5) of abrl1 compared with wild-type Chang7-2. Remarkably, the 602-bp InDel was associated with LRI in an F2 population developed by crossing abrl1 mutant and its wild-type. In addition, the 602-bp insertion increased ZmOCL5 promoter activity and expression. Haplotype analysis demonstrated that the 602-bp insertion was a rare mutation event. Taken together, we propose that the rolled leaf in the abrl1 mutant may be partially attributed to the 602-bp insertion, which may be an attractive target for the genetic improvement of LRI in maize.


Assuntos
Genes de Plantas , Folhas de Planta/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Mutagênese Insercional , Fenótipo , Fotossíntese , Zea mays/fisiologia
13.
Polymers (Basel) ; 11(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30960452

RESUMO

Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters-mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape-have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.

14.
Org Lett ; 19(3): 738-741, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28103047

RESUMO

A series of oxacalix[2]arene[2]triazines bearing one anionic head such as carboxylate, sulfonate, sulfate, and phosphate were synthesized. With the anionic head and complementary V-shape electron-deficient cavity, these macrocycles can serve as dual building units, and their anion-π directed self-assembly was investigated. The formation of oligomeric aggregates in solution was revealed by nuclear magnetic resonance, dynamic light scattering, and mass spectroscopy. Crystal structures further confirmed chainlike assembly formation directed by anion-π interactions.

15.
PLoS One ; 11(9): e0161322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598245

RESUMO

APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcription factor. It plays critical roles in development process, tolerance to biotic and abiotic stresses, and responses to plant hormones. However, limited data are available on the contributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121 HvAP2/ERF genes in barley were identified by using bioinformatics methods. A total of 118 HvAP2/ERF (97.5%) genes were located on seven chromosomes. According to phylogenetic classification of AP2/ERF family in Arabidopsis, HvAP2/ERF proteins were divided into AP2 (APETALA2), RAV (Related to ABI3/VP), DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and soloist sub families. The analysis of duplication events indicated that tandem repeat and segmental duplication contributed to the expansion of the AP2/ERF family in barley. HvDREB1s/2s genes displayed various expression patterns under abiotic stress and phytohormone. Taken together, the data generated in this study will be useful for genome-wide analysis to determine the precise role of the HvAP2/ERF gene during barley development, abiotic stress and phytohormone responses with the ultimate goal of improving crop production.


Assuntos
Hordeum/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Família Multigênica , Proteínas Nucleares/genética , Proteínas de Plantas/biossíntese , Fatores de Transcrição/biossíntese
16.
J Hazard Mater ; 320: 435-441, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585276

RESUMO

Uranium containing radioactive wastewater is seriously hazardous to the natural environment if it is being discharged directly. Herein, nano-flake like Fe loaded sludge carbon (Fe-SC) is synthesized by carbothermal process from Fe-rich sludge waste and applied in the immobilization of uranium in aqueous. Batch isotherm and kinetic adsorption experiments are adopted to investigate the adsorption behavior of Fe-SC to uranium in aqueous. XPS analyses were conducted to evaluate the immobilized mechanism. It was found that the carbonized temperature played significant role in the characteristics and immobilization ability of the resulted Fe-SC. The Fe-SC-800 carbonized at 800°C takes more advantageous ability in immobilization of uranium from aqueous than the commercial available AC and powder zero valent iron. The adsorption behavior could be fitted well with the Langmuir isotherm adsorption model and pseudo-second order model. The equilibrium adsorption amount and rate for Fe-SC-800 is high to 148.99mgg-1 and 0.015gmg-1min-1, respectively. Both reductive precipitation and physical adsorption are the main mechanisms of immobilization of uranium from aqueous by Fe-SC-800.

17.
Front Plant Sci ; 7: 228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973672

RESUMO

Plant peptide hormones play an important role in regulating plant developmental programs via cell-to-cell communication in a non-cell autonomous manner. To characterize the biological relevance of C-TERMINALLY ENCODED PEPTIDE (CEP) genes in rice, we performed a genome-wide search against public databases using a bioinformatics approach and identified six additional CEP members. Expression analysis revealed a spatial-temporal pattern of OsCEP6.1 gene in different tissues and at different developmental stages of panicle. Interestingly, the expression level of the OsCEP6.1 was also significantly up-regulated by exogenous cytokinin. Application of a chemically synthesized 15-amino acid OsCEP6.1 peptide showed that OsCEP6.1 had a negative role in regulating root and seedling growth, which was further confirmed by transgenic lines. Furthermore, the constitutive expression of OsCEP6.1 was sufficient to lead to panicle architecture and grain size variations. Scanning electron microscopy analysis revealed that the phenotypic variation of OsCEP6.1 overexpression lines resulted from decreased cell size but not reduced cell number. Moreover, starch accumulation was not significantly affected. Taken together, these data suggest that the OsCEP6.1 peptide might be involved in regulating the development of panicles and grains in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA