Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(2): 1103-1113, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574338

RESUMO

Anthracite is globally used as a filter material for water purification. Herein, it was found that up to 15 disinfection byproducts (DBPs) were formed in the chlorination of anthracite-filtered pure water, while the levels of DBPs were below the detection limit in the chlorination of zeolite-, quartz sand-, and porcelain sandstone-filtered pure water. In new-anthracite-filtered water, the levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia nitrogen (NH3-N) ranged from 266.3 to 305.4 µg/L, 37 to 61 µg/L, and 8.6 to 17.1 µg/L, respectively. In aged anthracite (collected from a filter at a DWTP after one year of operation) filtered water, the levels of the above substances ranged from 475.1 to 597.5 µg/L, 62.1 to 125.6 µg/L, and 14 to 28.9 µg/L, respectively. Anthracite would release dissolved substances into filtered water, and aged anthracite releases more substances than new anthracite. The released organics were partly (around 5%) composed by the µg/L level of toxic and carcinogenic aromatic carbons including pyridine, paraxylene, benzene, naphthalene, and phenanthrene, while over 95% of the released organics could not be identified. Organic carbon may be torn off from the carbon skeleton structure of anthracite due to hydrodynamic force in the water filtration process.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Água Potável/química , Desinfecção , Cloro , Carvão Mineral , Cloretos , Carbono , Halogenação , Poluentes Químicos da Água/análise , Desinfetantes/análise
2.
Environ Sci Technol ; 54(3): 1827-1836, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31763828

RESUMO

Highly toxic iodinated products would form in oxidation and disinfection of iodine-containing water. Variation of iodinated aromatic products in ferrate [Fe(VI)] oxidation of phenolic compounds (phenol, bisphenol A (BPA), and p-hydroxybenzoic acid (p-HBA)) in iodine-containing water was investigated. At pH 5.0, oxidation of phenolic compounds was inhibited by competitive reaction of ferrate with I-, and no formation of iodinated aromatic products was detected. Almost all I- was converted into nontoxic IO3-. At pH 7.0, 8.0, and 9.0, HOI formed in ferrate oxidation of I- and further reacted with phenols, with the formation of iodinated aromatic products. Mass spectrometry analysis showed that both kinds and contents of iodinated aromatic products were raised with the increase in solution pH and the content of I-, and these iodinated aromatic products were further oxidized by ferrate. Ferrate deprived iodine from iodinated aromatic products and transferred highly toxic organic iodine into nontoxic IO3-. An electron-donating substituent (alkyl) increased the reactivity of phenol with ferrate and HOI and facilitated ferrate oxidation of iodinated phenols. An electron-drawing substituent (carboxyl) decreased the reactivity of phenol with ferrate and HOI and hindered the further oxidation of iodinated aromatic products. A kinetic model about the variation of phenol, BPA, and p-HBA in reaction with ferrate in iodine-containing water was developed, and the oxidation profile of phenolic compounds could be satisfactorily predicted at various iodide concentrations.


Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Iodetos , Ferro , Cinética , Oxirredução , Fenóis , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA