Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(33): e202406515, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38803131

RESUMO

Transformation of carbon dioxide and nitrate ions into urea offers an attractive route for both nitrogen fertilizer production and environmental remediation. However, achieving this transformation under mild conditions remains challenging. Herein, we report an efficient photoelectrochemical method for urea synthesis by co-reduction of carbon dioxide and nitrate ion over a Cu2O photocathode, delivering urea formation rate of 29.71±2.20 µmol g-1 h-1 and Faradaic efficiency (FE) of 12.90±1.15 % at low external potential (-0.017 V vs. reversible hydrogen electrode). Experimental data combined with theoretical calculations suggest that the adsorbed CO* and NO2* species are the key intermediates, and associated C-N coupling is the rate-determining step. This work demonstrates that Cu2O is an efficient catalyst to drive co-reduction of CO2 and NO3 - to urea under light irradiation with low external potential, showing great opportunity of photoelectrocatalysis as a sustainable tool for value-added chemical synthesis.

2.
JACS Au ; 4(4): 1509-1520, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665658

RESUMO

The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.

3.
J Phys Chem Lett ; 15(7): 2006-2014, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349852

RESUMO

Improving the efficiency of the oxygen evolution reaction (OER) is crucial for advancing sustainable and environmentally friendly hydrogen energy. Layered double hydroxides (LDHs) have emerged as promising electrocatalysts for the OER. However, a thorough understanding of the impact of structural disorder and defects on the catalytic activity of LDHs remains limited. In this work, a series of NiAl-LDH models are systematically constructed, and their OER performance is rigorously screened through theoretical density functional theory. The acquired results unequivocally reveal that the energy increase induced by structural disorder is effectively counteracted at the defect surface, indicating the coexistence of defects and disorder. Notably, it is ascertained that the simultaneous presence of defects and disorder synergistically augments the catalytic activity of LDHs in the context of the OER. These theoretical findings offer valuable insights into the design of highly efficient OER catalysts while also shedding light on the efficacy of LDH electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA