Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(2): 335-339, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33373192

RESUMO

Single entity electrochemistry (SEE) has emerged as a promising method for precise measurement and fundamental understanding of the heterogeneity of single entities. Herein, we propose the dual responsive SEE sensing of the silver nanoparticles (AgNPs) collisions through a wireless nanopore electrode (WNE). Given the high temporal resolution and low background noise features, the Faradaic and capacitive currents provide the AgNPs' collision response. The electron transfer between the AgNPs and the electrode surface is identified under a bipolar electrochemical mechanism. Compared to the ultramicroelectrode, multistep oxidation of 30 nm AgNPs is observed due to the decreased interaction of the nanoparticles to the electrode. Moreover, the nanoconfinement of WNE plays a vital role in the repeated capturing of nanoparticles from the nontunneling region into the tunneling region until a complete oxidation. As a comparison, the collision of 5 nm AgNPs with higher interaction at the electrode surface shows great decrease in the multistep events. Thus, we propose a nanoconfined interaction based SEE method which could be used for simultaneously capturing the Faradaic and capacitive response. The nanoconfined interaction based SEE method holds great promise in the better understanding of heterogeneity of single particles.


Assuntos
Nanopartículas Metálicas , Nanoporos , Eletroquímica , Eletrodos , Prata
2.
Nat Protoc ; 14(7): 2015-2035, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31168087

RESUMO

Measurements of a single entity underpin knowledge of the heterogeneity and stochastics in the behavior of molecules, nanoparticles, and cells. Electrochemistry provides a direct and fast method to analyze single entities as it probes electron/charge-transfer processes. However, a highly reproducible electrochemical-sensing nanointerface is often hard to fabricate because of a lack of control of the fabrication processes at the nanoscale. In comparison with conventional micro/nanoelectrodes with a metal wire inside, we present a general and easily implemented protocol that describes how to fabricate and use a wireless nanopore electrode (WNE). Nanoscale metal deposition occurs at the tip of the nanopipette, providing an electroactive sensing interface. The WNEs utilize a dynamic ionic flow instead of a metal wire to sense the interfacial redox process. WNEs provide a highly controllable interface with a 30- to 200-nm diameter. This protocol presents the construction and characterization of two types of WNEs-the open-type WNE and closed-type WNE-which can be used to achieve reproducible electrochemical measurements of single entities. Combined with the related signal amplification mechanisms, we also describe how WNEs can be used to detect single redox molecules/ions, analyze the metabolism of single cells, and discriminate single nanoparticles in a mixture. This protocol is broadly applicable to studies of living cells, nanomaterials, and sensors at the single-entity level. The total time required to complete the protocol is ~10-18 h. Each WNE costs ~$1-$3.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletrodos , Nanoporos , Nanotecnologia/métodos , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Células MCF-7 , Nanopartículas/análise , Oxirredução , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Tecnologia sem Fio
3.
Chem Sci ; 10(46): 10728-10732, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32153747

RESUMO

We have developed a glass nanopore based single molecule tool to investigate the dynamic oligomerization and aggregation process of Aß1-42 peptides. The intrinsic differences in the molecular size and surface charge of amyloid aggregated states could be distinguished through single molecule induced characteristic current fluctuation. More importantly, our results reveal that the neurotoxic Aß1-42 oligomer tends to adsorb onto the solid surface of nanopores, which may explain its instability and highly neurotoxic features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA