Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 87(2): 1358-65, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25530496

RESUMO

Hairpin DNA (hpDNA) as a novel biobarcode was conjugated with gold nanoparticles (AuNPs) and a reporter DNA (rpDNA) to form hpDNA/AuNP/rpDNA nanoparticles for the detection of an oligonucleotide sequence associated with Helicobacter pylori as a model target. The rpDNA is complementary to about a half-portion of the target DNA sequence (tDNA). A capture DNA probe (cpDNA), complementary to the other half of the tDNA, was immobilized on the surface of a gold electrode. In the presence of tDNA, a sandwich structure of (hpDNA/AuNP/rpDNA)/tDNA/cpDNA was formed on the electrode surface. The differential pulse voltammetry (DPV) detection was based on [Ru(NH3)5(3-(2-phenanthren-9-yl-vinyl)-pyridine)](2+), an electroactive complex that binds to the sandwich structure by its intercalation with the hpDNA and the double-stranded DNA (dsDNA) of the sandwich structure. The several factors--high density of biobarcode hpDNA on the surface of AuNPs, multiple electroactive complex molecules intercalated with each hpDNA and dsDNA molecule, and the intercalation binding mode of the electroactive complex with the DNA sandwich structure--contribute to the DNA sensor with highly selective and sensitive sensing properties. The DNA sensor exhibited a detection limit of 1 × 10(-15) M (i.e., 1 fM), the DNA levels in physiological samples, with linearity down to 2 × 10(-15) M. It can differentiate even one single mismatched DNA from the complementary tDNA. This novel biobarcode-based DNA sensing approach should provide a general platform for development of direct, simple, repetitive, sensitive, and selective DNA sensors for various important applications in analytical, environmental, and clinical chemistry.


Assuntos
Sondas de DNA/química , DNA Bacteriano/análise , Técnicas Eletroquímicas/instrumentação , Ouro/química , Helicobacter pylori/isolamento & purificação , Nanopartículas Metálicas/química , Complexos de Coordenação/química , DNA Bacteriano/isolamento & purificação , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Rutênio/química
2.
Anal Chem ; 86(10): 4910-8, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24766419

RESUMO

A planar boron-doped diamond (BDD) electrode was treated with KOH and functionalized with 3-aminopropyltriethoxysilane (APTES) to serve as a biosensing platform for biomolecule immobilization with glucose oxidase (GOx) as a test model. The free amino groups of GOx and APTES were cross-linked by glutaraldehyde (X), a bifunctional chemical to form a stable enzyme layer (GOx-X-APTES) on BDD. Micrographs obtained by scanning electron microscopy revealed that a mesoporous structure uniformly covered the BDD surface. Cyclic voltammetry of GOx immobilized showed a pair of well-defined redox peaks in neutral phosphate buffer solution, corresponding to the direct electron transfer of GOx. The apparent heterogeneous electron transfer rate constant of the immobilized GOx was estimated to be 8.85 ± 0.47 s(-1), considerably higher than the literature reported values. The determination of glucose was carried out by amperometry at -0.40 V, and the developed biosensor showed good reproducibility and stability with a detection limit of 20 µM. Both ascorbic and uric acids at normal physiological conditions did not provoke any signals. The dynamic range of glucose detection was further extended by covering the enzyme electrode with a thin Nafion layer. The Nafion/GOx-X-APTES/BDD biosensor showed excellent stability, a detection limit of 30 µM, a linear range between 35 µM and 8 mM, and a dynamic range up to 14 mM. Such analytical performances were compared favorably with other complicated sensing schemes using nanomaterials, redox polymers, and nanowires. The APTES-functionalized BDD could be easily extended to immobilize other redox enzymes or proteins of interests.


Assuntos
Boro/química , Diamante/química , Transporte de Elétrons , Enzimas Imobilizadas/química , Glucose Oxidase/química , Técnicas Biossensoriais , Eletrodos , Indicadores e Reagentes , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA