Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Med Res Rev ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132876

RESUMO

Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1ß, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.

2.
Ecotoxicol Environ Saf ; 281: 116601, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896905

RESUMO

In this study, a novel sulfur/zinc co-doped biochar (SZ-BC) stabilizer was successfully developed for the remediation of mercury-contaminated soil. Results from SEM, TEM, FTIR and XRD revealed that biochar (BC) was successfully modified by sulfur and zinc. In the batch adsorption experiments, the sulfur-zinc co-pyrolysis biochar displayed excellent Hg(II) adsorption performance, with the maximum adsorption capacity of SZ-BC (261.074 mg/g) being approximately 16.5 times that of BC (15.855 mg/g). Laboratory-scale static incubation, column leaching, and plant pot experiments were conducted using biochar-based materials. At an additional dosage of 5 % mass ratio, the SZ-BC exhibits the most effective stabilization of mercury in soil, leading to a significant reduction in leaching loss compared to the control group (CK) by 51.30 %. Following 4 weeks of incubation and 2 weeks of leaching with SZ-BC, the residual mercury in the soil increased by 27.84 %. As a result, potential ecological risk index of mercury decreased by 92 % compared to the CK group. In the pot experiment, SZ-BC significantly enhanced the growth of Chinese cabbage, with biomass and root dry weight reaching 3.20 and 2.80 times that of the CK group, respectively. Additionally, the Translocation Factor (TF) and Bioconcentration Factor (BF) were reduced by 44.86 % and 74.43 %, respectively, in the SZ-BC group compared to the CK group. Moreover, SZ-BC can effectively improve enzyme activities and increase microbial communities in mercury-contaminated soils. The mechanisms of adsorption and stabilization were elucidated through electrostatic adsorption, ion exchange, surface complexation, and precipitation. These findings provide a potentially effective material for stabilizing soils contaminated with mercury.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Mercúrio , Poluentes do Solo , Enxofre , Zinco , Carvão Vegetal/química , Mercúrio/química , Poluentes do Solo/química , Zinco/química , Recuperação e Remediação Ambiental/métodos , Adsorção , Enxofre/química , Solo/química , Brassica/química , Biodegradação Ambiental
3.
Biochem Pharmacol ; 223: 116194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583812

RESUMO

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Assuntos
Compostos de Anilina , Diterpenos , Tiofenos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Tiorredoxina Redutase 1 , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Assuntos
Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Peixe-Zebra , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , China , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
RMD Open ; 9(4)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37973536

RESUMO

OBJECTIVES: Gout, as the most prevalent form of inflammatory arthritis, necessitates the use of animal models to investigate the molecular mechanisms involved in its development. Therefore, our objective was to develop a novel chronic mouse model of gout that more closely mimics the progression of gout in humans. METHODS: A novel chronic mouse model of gout was established by a simple method, which does not require high technical proficiency, predominantly involves daily intraperitoneal injections of potassium oxonate for approximately 4 months, combined with a high fat-diet and injections of acetic acid into the hind paws to facilitate the formation of monosodium urate (MSU). Arthritis scores and paw oedema were assessed, behavioural tests were conducted, and histopathological and imaging evaluations of the arthritic paw joints were performed. RESULTS: After 4 months of induction, mice in the model group exhibited noticeable increases in arthritis severity, joint and cartilage damage, as well as bone erosion. Gomori's methenamine silver stain revealed the presence of MSU crystal deposition or tophi in the paw joints or ankle joints of up to 37.9% of the model mice (11 out of 29 mice). Moreover, treatment with benzbromarone effectively prevented the further development of gout or tophi formation in model mice. CONCLUSIONS: Our model more accurately replicates the pathological features of gouty arthritis compared with gout induced by MSU crystal injections. Therefore, it is particularly suitable for further investigations into the pathogenesis of gout and also serves as a valuable platform for screening potential antigout agents.


Assuntos
Artrite Gotosa , Gota , Humanos , Camundongos , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/patologia , Gota/tratamento farmacológico , Ácido Úrico , Supressores da Gota/efeitos adversos , Modelos Animais de Doenças
6.
Eur J Med Res ; 28(1): 399, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794519

RESUMO

BACKGROUND: For patients with locally advanced nasopharyngeal cancer (LA-NPC), concurrent chemoradiotherapy (CCRT) is the standardized treatment. However, whether a weekly or triweekly cisplatin regimen should be used during CCRT is controversial. Therefore, we conducted this meta-analysis to explore differences in the effects and toxicities of the two regimens. METHODS: We searched PubMed, Embase, and the Cochrane Library (until June 10, 2022). We evaluated overall survival (OS), distant metastasis-free survival (DMFS), locoregional recurrence-free survival (LRFS), disease-free survival (DFS) and grade ≥ 3 adverse events. The effect indices were hazard ratios (HRs) and odds ratios (ORs), and Review Manager software 5.4 (RevMan 5.4) was used for computations. RESULTS: We identified 7 studies in our analysis. There was no significant difference in OS (HR = 1.00, 95% CI 0.73-1.38, P = 0.99), DMFS (HR = 0.84, 95% CI 0.58-1.22, P = 0.36), LRFS (HR = 0.91, 95% CI 0.63-1.32, P = 0.62) or DFS (HR = 0.93, 95% CI 0.56-1.56; P = 0.78) between the weekly and triweekly cisplatin regimens. We found that the weekly cisplatin regimen was more likely to cause grade ≥ 3 hematological toxicity events than the triweekly cisplatin regimen. In addition, subgroup analyses revealed that patients undergoing CCRT and CCRT plus adjuvant chemotherapy (AC) had similar OS or DFS. CONCLUSION: Weekly and triweekly cisplatin regimens had similar efficacy for LA-NPC. The triweekly regimen may replace the weekly regimen for LA-NPC because of lower toxicity. Larger data accumulation and more multicenter clinical trials may be needed to verify these results.


Assuntos
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Cisplatino/efeitos adversos , Neoplasias Nasofaríngeas/tratamento farmacológico , Carcinoma Nasofaríngeo/tratamento farmacológico , Quimiorradioterapia/efeitos adversos , Intervalo Livre de Doença , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Estudos Multicêntricos como Assunto
7.
Eur Arch Otorhinolaryngol ; 280(7): 3097-3106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079074

RESUMO

BACKGROUND: Concurrent chemoradiotherapy has long been a standardized therapy for localized advanced nasopharyngeal cancer. It is widely used in clinical applications. In contrast, NCCN guidelines highlight that the efficacy of concurrent chemoradiotherapy for stage II nasopharyngeal cancer in the new era of intensity-modulated radiotherapy has not been defined. Thus, we systematically reviewed the significance of concurrent chemoradiotherapy for stage II nasopharyngeal cancer. METHODS: We searched the relevant literature in PubMed, EMBASE, and Cochrane, extracting relevant data from the searched literature. The main items extracted were hazard ratios (HRs), risk ratios (RRs) and 95% confidence intervals (CIs). When the HR could not be extracted from the literature, we used Engauge Digitizer software for extraction. Data analysis was accomplished using the Review Manager 5.4 tool. RESULTS: Our study included seven articles involving 1633 cases of stage II nasopharyngeal cancer. The survival outcomes were overall survival (OS) (HR = 1.03, 95% CI (0.71-1.49), P = 0.87), progression-free survival (PFS) (HR = 0.91, 95% CI (0.59-1.39), P = 0.66), distant metastasis-free survival (DMFS) (HR = 1.05, 95% CI (0.57-1.93), P = 0.87), local recurrence-free survival (LRFS) (HR = 0.87, 95% CI (0.41-1.84), P = 0.71, P > 0.05), and locoregional failure-free survival (LFFS) (HR = 1.18, 95% CI (0.52-2.70), P = 0.69). CONCLUSIONS: In the era of intensity-modulated radiotherapy, concurrent chemoradiotherapy and radiotherapy alone have the same survival benefits, and concurrent chemoradiotherapy increases acute hematological toxicity. Subgroup analysis showed that for people with N1 nasopharyngeal cancer at risk of distant metastases, concurrent chemoradiotherapy and radiotherapy alone also had equal survival benefits.


Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Intervalo Livre de Doença , Quimiorradioterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos
8.
Genes (Basel) ; 14(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37107587

RESUMO

BACKGROUND: The Bcl2-associated athanogene4 (BAG4/SODD) protein could be identified as a tumor marker for several malignancies and plays a major role in the occurrence, development, and drug resistance of tumors. However, the role of Silencer of death domains (SODD) in lung carcinogenesis is still elusive. OBJECTIVE: To illuminate the effect of SODD on the proliferation, migration, invasion, and apoptosis of lung cancer cells and tumor growth in vivo and explore the corresponding mechanism. METHODS: The expression of SODD in tumor and normal tissues was determined and compared via western blot. SODD gene knockout lung cancer cells (H1299 cells) were established through a CRISPR/Cas9 gene deleting system, and a transient SODD overexpression of H1299 cells was also constructed. Then, cell proliferation and invasion were assessed through colony formation and cell counting kit-8 assays, transwell migration assays, and wound healing assays. Cell drug sensitivity is also analyzed by Cell Counting Kit-8 assay. The flow cytometer was used to perform cell circle and apoptosis analysis. The interaction of SODD and RAF-1 was confirmed by co-immunoprecipitation, and the phosphorylated level of Phosphatidylinositol 3-kinase (PI3K), Serine/threonine-protein kinase (AKT), Rapidly accelerated fibrosarcoma (RAF)-1,and extracellular signal regulated kinase (ERK) in cells was examined by western blot to evaluate the activation of PI3K/PDK1/AKT and RAF/MEK/ERK pathways. In vivo, Xenograft tumor assay of SODD knockout H1299 cells was used to evaluate further the role of SODD on the proliferation of H1299 cells. RESULTS: SODD binds to RAF-1 and is over-expressed in lung tissues, and promotes the proliferation, migration, invasion, and drug sensitivity of H1299 cells. The reduced cells in the S phase and increased cells arrested in the G2/M phase were found in SODD knockout H1299 cells, and more cells got apoptosis. The expression of 3-phosphoinositide-dependent protein kinase 1(PDK1) protein in SODD knockout H1299 cells decreases distinctively, and the phosphorylated level of AKT, RAF-1, and ERK-1 kinase in SODD knockout H1299 cells is also less than that in normal H1299 cells. In contrast, SODD overexpression significantly increases the phosphorylation of AKT. In vivo, SODD promotes the tumorigenicity of H1299 cells in nude mice. CONCLUSIONS: SODD is overexpressed in lung tissues and plays a considerable role in the development and progression of lung cancer by regulating the PI3K/PDK1/AKT and RAF/MEK/ERK pathways.


Assuntos
Fibrossarcoma , Neoplasias Pulmonares , Camundongos , Animais , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transformação Celular Neoplásica , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
9.
Food Funct ; 14(6): 2921-2932, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36892225

RESUMO

Hericium erinaceus is a kind of large fungus with rich nutrition and its polysaccharides exhibit various biological activities. In recent years, widespread interest has been focused on maintaining or improving intestinal health through the consumption of edible fungi. Studies have shown that hypoimmunity can damage the intestinal barrier, which in turn seriously affects human health. The aim of this work was to investigate the ameliorative effects of Hericium erinaceus polysaccharides (HEPs) on intestinal barrier damage in cyclophosphamide (CTX)-induced immunocompromised mice. The results showed that the HEP effectively increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD), and decreased malondialdehyde (MDA) content in the liver tissues of mice. In addition, the HEP restored the immune organ index, increased the serum levels of IL-2 and IgA, augmented the mRNA expression levels of intestinal Muc2, Reg3γ, occludin and ZO-1, and reduced intestinal permeability in mice. It was further confirmed by an immunofluorescence assay that the HEP enhanced the expression level of intestinal tight junction proteins to protect the intestinal mucosal barrier. These results suggested that the HEP could reduce intestinal permeability and enhance intestinal immune functions by increasing antioxidant capacity, tight junction proteins and immune-related factors in CTX-induced mice. In conclusion, the HEP effectively ameliorated CTX-induced intestinal barrier damage in immunocompromised mice, which provides a new application direction for the HEP as a natural immunopotentiator with antioxidant function.


Assuntos
Antioxidantes , Basidiomycota , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Basidiomycota/metabolismo , Polissacarídeos/farmacologia , Ciclofosfamida/efeitos adversos , Fatores Imunológicos , Proteínas de Junções Íntimas
10.
Chin J Integr Med ; 29(7): 644-654, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809500

RESUMO

Chinese medicine (CM) is an important resource for human life understanding and discovery of drugs. However, due to the unclear pharmacological mechanism caused by unclear target, research and international promotion of many active components have made little progress in the past decades of years. CM is mainly composed of multi-ingredients with multi-targets. The identification of targets of multiple active components and the weight analysis of multiple targets in a specific pathological environment, that is, the determination of the most important target is the main obstacle to the mechanism clarification and thus hinders its internationalization. In this review, the main approach to target identification and network pharmacology were summarized. And BIBm (Bayesian inference modeling), a powerful method for drug target identification and key pathway determination was introduced. We aim to provide a new scientific basis and ideas for the development and international promotion of new drugs based on CM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Teorema de Bayes , Simulação de Acoplamento Molecular
11.
J Sci Food Agric ; 103(6): 3050-3064, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36546454

RESUMO

BACKGROUND: The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS: The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and ß diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION: Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.


Assuntos
Basidiomycota , Microbioma Gastrointestinal , Camundongos , Animais , Receptor 4 Toll-Like , NF-kappa B , Basidiomycota/química , Polissacarídeos/química , Ciclofosfamida , Imunidade , Ácidos Graxos Voláteis
12.
Front Bioeng Biotechnol ; 10: 981187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061431

RESUMO

According to the classical Windkessel model, the heart is the only power source for blood flow, while the arterial system is assumed to be an elastic chamber that acts as a channel and buffer for blood circulation. In this paper we show that in addition to the power provided by the heart for blood circulation, strain energy stored in deformed arterial vessels in vivo can be transformed into mechanical work to propel blood flow. A quantitative relationship between the strain energy increment and functional (systolic, diastolic, mean and pulse blood pressure) and structural (stiffness, diameter and wall thickness) parameters of the aorta is described. In addition, details of blood flow across the aorta remain unclear due to changes in functional and other physiological parameters. Based on the arterial strain energy and fluid-structure interaction theory, the relationship between physiological parameters and blood supply to organs was studied, and a corresponding mathematical model was developed. The findings provided a new understanding about blood-flow circulation, that is, cardiac output allows blood to enter the aorta at an initial rate, and then strain energy stored in the elastic arteries pushes blood toward distal organs and tissues. Organ blood supply is a key factor in cardio-cerebrovascular diseases (CCVD), which are caused by changes in blood supply in combination with multiple physiological parameters. Also, some physiological parameters are affected by changes in blood supply, and vice versa. The model can explain the pathophysiological mechanisms of chronic diseases such as CCVD and hypertension among others, and the results are in good agreement with epidemiological studies of CCVD.

13.
Biosaf Health ; 4(4): 228-233, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35856045

RESUMO

A series of stringent non-pharmacological and pharmacological interventions were implemented to contain the pandemic but the pandemic continues. Moreover, vaccination breakthrough infection and reinfection in convalescent coronavirus disease 2019 (COVID-19) cases have been reported. Further, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerged with mutations in spike (S) gene, the target of most current vaccines. Importantly, the mutations exhibit a trend of immune escape from the vaccination. Herein the scientific question that if the vaccination drives genetic or antigenic drifts of SARS-CoV-2 remains elusive. We performed correlation analyses to uncover the impacts of wide vaccination on epidemiological characteristics of COVID-19. In addition, we investigated the evolutionary dynamics and genetic diversity of SARS-CoV-2 under immune pressure by utilizing the Bayesian phylodynamic inferences and the lineage entropy calculation respectively. We found that vaccination coverage was negatively related to the infections, severe cases, and deaths of COVID-19 respectively. With the increasing vaccination coverage, the lineage diversity of SARS-CoV-2 dampened, but the rapid mutation rates of the S gene were identified, and the vaccination could be one of the explanations for driving mutations in S gene. Moreover, new epidemics resurged in several countries with high vaccination coverage, questioning their current pandemic control strategies. Hence, integrated vaccination and non-pharmacological interventions are critical to control the pandemic. Furthermore, novel vaccine preparation should enhance its capabilities to curb both disease severity and infection possibility.

14.
Front Nutr ; 9: 858585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433782

RESUMO

Hericium erinaceus polysaccharides (HEPs) have attracted widespread attention in regulating gut microbiota (GM). To investigate digestibility and fermentation of HEPs and their effects on GM composition, three polysaccharide fractions, namely, HEP-30, HEP-50, and HEP-70, were fractionally precipitated with 30%, 50%, and 70% ethanol concentrations (v/v) from hot water-soluble extracts of Hericium erinaceus, respectively. Three kinds of prepared HEPs were structurally characterized and simulated gastrointestinal digestion, and their effects on human fecal microbiota fermentations of male and female and short-chain fatty acid (SCFA) production in vitro were clarified. Under digestive conditions simulating saliva, stomach, and small intestine, HEPs were not significantly influenced and safely reached the distal intestine. After 24 h of in vitro fermentation, the content of SCFAs was significantly enhanced (p < 0.05), and the retention rates of total and reducing sugars and pH value were significantly decreased (p < 0.05). Thus, HEPs could be utilized by GM, especially HEP-50, and enhanced the relative abundance of SCFA-producing bacteria, e.g., Bifidobacterium, Faecalibacterium, Blautia, Butyricicoccus, and Lactobacillus. Furthermore, HEPs reduced the relative abundances of opportunistic pathogenic bacteria, e.g., Escherichia-Shigella, Klebsiella, and Enterobacter. This study suggests that gradual ethanol precipitation is available for the preparation of polysaccharides from Hericium erinaceus, and the extracted polysaccharide could be developed as functional foods with great development value.

15.
Sci Transl Med ; 14(630): eabf5473, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108062

RESUMO

Metastasis is the major cause of cancer-related deaths due to the lack of effective therapies. Emerging evidence suggests that certain epigenetic and transcriptional regulators drive cancer metastasis and could be targeted for metastasis treatment. To identify epigenetic regulators of breast cancer metastasis, we profiled the transcriptomes of matched pairs of primary breast tumors and metastases from human patients. We found that distant metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. The acetyl-lysine reader, cat eye syndrome chromosome region candidate 2 (CECR2), was the top up-regulated epigenetic regulator in metastases associated with an increased abundance of M2 macrophages and worse metastasis-free survival. CECR2 was required for breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, the nuclear factor κB (NF-κB) family member v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) recruits CECR2 to increase chromatin accessibility and activate the expression of their target genes. These target genes include multiple metastasis-promoting genes, such as TNC, MMP2, and VEGFA, and cytokine genes CSF1 and CXCL1, which are critical for immunosuppression at metastatic sites. Consistent with these results, pharmacological inhibition of CECR2 bromodomain impeded NF-κB-mediated immune suppression by macrophages and inhibited breast cancer metastasis. These results reveal that targeting CECR2 may be a strategy to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Metástase Neoplásica/patologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição
16.
J Control Release ; 343: 43-56, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066098

RESUMO

Transdermal delivery of solid nanoparticles remains a big problem. Microneedle administration and subcutaneous injection are the only two feasible approaches. Here, we developed a noninvasive strategy for the transdermal delivery of mesoporous silica nanoparticles (MSNs) using deep eutectic solvent (DES) from amino acid (AA) and citric acid (CA), which showed a substantial enhancement in skin penetration ability. MSNs were surface modified by CA and then reacted with Lysine (Lys) to form the DES-MSNs system. The covalent linkage of MSNs to the surrounding DES immobilized the nanoparticles and provided strong interactions. We used intradermal and transdermal penetration assays to identify that the AACA DES could synchronously drive the MSNs to penetrate across the entire skin via a "Drag" effect. Furthermore, this is the first study to detect the nanoparticles in the blood by topical administration routes. Thus, we achieved the transdermal delivery of the MSNs into blood circulation. This work would extend the application of the MSNs drug carrier system and provide a novel strategy for the controlled and sustained delivery of nanoparticles.


Assuntos
Nanopartículas , Dióxido de Silício , Administração Cutânea , Solventes Eutéticos Profundos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Porosidade , Dióxido de Silício/química
17.
Biochem Pharmacol ; 195: 114864, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861243

RESUMO

Dictamnine (Dic), a naturally occurring small-molecule furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz., is reported to display anticancer properties. However, little is known about the direct target proteins and anticancer mechanisms of Dic. In the current study, Dic was found to suppress the growth of lung cancer cells in vitro and in vivo, and to attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by inhibiting the phosphorylation and activation of receptor tyrosine kinase c-Met. Moreover, the binding of Dic to c-Met was confirmed by using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay. Among all cancer cell lines tested, Dic inhibited the proliferation of c-Met-dependent EBC-1 cells with the greatest potency (IC50 = 2.811 µM). Notably, Dic was shown to synergistically improve the chemo-sensitivity of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant lung cancer cells to gefitinib and osimertinib. These results suggest that Dic is a c-Met inhibitor that can serve as a potential therapeutic agent in the treatment of lung cancer, especially against EGFR TKI-resistant and c-Met-dependent lung cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Front Oncol ; 11: 613949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692467

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the most common gastrointestinal cancer and has a low overall survival rate. Tumor-node-metastasis staging alone is insufficient to predict patient prognosis. Autophagy and long noncoding RNAs play important roles in regulating the biological behavior of CRC. Therefore, establishing an autophagy-related lncRNA (ARlncRNA)-based bioinformatics model is important for predicting survival and facilitating clinical treatment. METHODS: CRC data were retrieved from The Cancer Genome Atlas. The database was randomly divided into train set and validation set; then, univariate and multivariate Cox regression analyses were performed to screen prognosis-related ARlncRNAs for prediction model construction. Interactive network and Sankey diagrams of ARlncRNAs and messenger RNAs were plotted. We analyzed the survival rate of high- and low-risk patients and plotted survival curves and determined whether the risk score was an independent predictor of CRC. Receiver operating characteristic curves were used to evaluate model sensitivity and specificity. Then, the expression level of lncRNA was detected by quantitative real-time polymerase chain reaction, and the location of lncRNA was observed by fluorescence in situ hybridization. Additionally, the protein expression was detected by Western blot. RESULTS: A prognostic prediction model of CRC was built based on nine ARlncRNAs (NKILA, LINC00174, AC008760.1, LINC02041, PCAT6, AC156455.1, LINC01503, LINC00957, and CD27-AS1). The 5-year overall survival rate was significantly lower in the high-risk group than in the low-risk group among train set, validation set, and all patients (all p < 0.001). The model had high sensitivity and accuracy in predicting the 1-year overall survival rate (area under the curve = 0.717). The prediction model risk score was an independent predictor of CRC. LINC00174 and NKILA were expressed in the nucleus and cytoplasm of normal colonic epithelial cell line NCM460 and colorectal cancer cell lines HT29. Additionally, LINC00174 and NKILA were overexpressed in HT29 compared with NCM460. After autophagy activation, LINCC00174 expression was significantly downregulated both in NCM460 and HT29, while NKILA expression was significantly increased. CONCLUSION: The new ARlncRNA-based model predicts CRC patient prognosis and provides new research ideas regarding potential mechanisms regulating the biological behavior of CRC. ARlncRNAs may play important roles in personalized cancer treatment.

19.
Front Oncol ; 11: 646584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646757

RESUMO

INTRODUCTION: Although intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy (VMAT) and tomotherapy (TOMO) are broadly applied for nasopharyngeal carcinoma (NPC), the best technique remains unclear. Therefore, this study was conducted to address this issue. METHODS: The priority-classified plan optimization model was applied to IMRT, VMAT and TOMO plans in forty NPC patients according to the latest international guidelines. And the dosimetric parameters of planning target volumes (PTVs) and organs at risk (OARs) were compared among these three techniques. The Friedman M test in SPSS software was applied to assess significant differences. RESULTS: The median PGTVnx coverage of IMRT was the lowest (93.5%, P < 0.001) for all T categories. VMAT was comparable to TOMO in OARs clarified as priority I and II, and both satisfied the prescribed requirement. IMRT resulted in a relatively high dose for V25 and V30. Interestingly, subgroup analysis showed that the median PTV coverage of the three techniques was no less than 95% in the early T stage. The heterogeneity index (HI) of PGTVnx in VMAT was better than that in IMRT (P = 0.028). Compared to TOMO, VMAT showed a strong ability to protect eyesight and decrease low-dose radiation volumes. In the advanced T stage subgroup, TOMO numerically achieved the highest median PGTVnx coverage volume compared with VMAT and IMRT (93.61%, 91% and 90%, respectively). The best CI and HI of PCTV-1 were observed in TOMO. Furthermore, TOMO was better than VMAT for sparing the brain stem, spinal cord and temporal lobes (all P < 0.05). However, the median V5, V10, V15, V20 and V25 were significantly higher with TOMO than with VMAT (all P < 0.05). CONCLUSION: In the early T stage, VMAT provides a similar dose coverage and protection of OARs to IMRT, and there are no obvious advantages to choosing TOMO for NPC patients in the early T stage. TOMO may be recommended for patients in the advanced T stage due as it provides the largest dose coverage of PGTVnx and the best protection of the brain stem, spinal cord and temporal lobes. Additionally, more randomized clinical trials are needed for further clarification.

20.
Front Pharmacol ; 12: 735876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552493

RESUMO

The serotonin receptor 5-HT1B is widely expressed in the central nervous system and has been considered a drug target in a variety of cognitive and psychiatric disorders. The anti-inflammatory effects of 5-HT1B agonists may present a promising approach for Alzheimer's disease (AD) treatment. Herbal antidepressants used in the treatment of AD have shown functional overlap between the active compounds and 5-HT1B receptor stimulation. Therefore, compounds in these medicinal plants that target and stimulate 5-HT1B deserve careful study. Molecular docking, drug affinity responsive target stability, cellular thermal shift assay, fluorescence resonance energy transfer (FRET), and extracellular regulated protein kinases (ERK) 1/2 phosphorylation tests were used to identify emodin-8-O-ß-d-glucopyranoside (EG), a compound from Chinese medicinal plants with cognitive deficit attenuating and antidepressant effects, as an agonist of 5-HT1B. EG selectively targeted 5-HT1B and activated the 5-HT1B-induced signaling pathway. The activated 5-HT1B pathway suppressed tumor necrosis factor (TNF)-α levels, thereby protecting neural cells against beta-amyloid (Aß)-induced death. Moreover, the agonist activity of EG towards 5-HT1B receptor, in FRET and ERK1/2 phosphorylation, was antagonized by SB 224289, a 5-HT1B antagonist. In addition, EG relieved AD symptoms in transgenic worm models. These results suggested that 5-HT1B receptor activation by EG positively affected Aß-related inflammatory process regulation and neural death resistance, which were reversed by antagonist SB 224289. The active compounds such as EG might act as potential therapeutic agents through targeting and stimulating 5-HT1B receptor for AD and other serotonin-related disorders. This study describes methods for identification of 5-HT1B agonists from herbal compounds and for evaluating agonists with biological functions, providing preliminary information on medicinal herbal pharmacology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA