Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402343, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639055

RESUMO

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged carrier lifetime highly related to enhanced exciton delocalization, the PM6:2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6~561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6:BP-4F and PM6:2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM1.5G, 100 mW cm-2).

2.
Angew Chem Int Ed Engl ; 63(8): e202317942, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179820

RESUMO

CO2 electroreduction (CO2 R) operating in acidic media circumvents the problems of carbonate formation and CO2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2 R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali-cation-free CO2 R in pure acid. However, without alkali cations, stabilizing *CO2 intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single-atom active site with energetically localized d states to strengthen the adsorbate-surface interactions, which stabilizes *CO2 intermediates at the acidic interface (pH=1). As a result, we realize CO2 conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2 is successfully converted in cation exchanged membrane-based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2 R compared to alkaline conditions, since the potential-limiting step, *CO2 to *COOH, is pH-dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2 R.

3.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174792

RESUMO

The on-demand assembly of 2D heterostructures has brought about both novel interfacial physical chemistry and optoelectronic applications; however, existing studies rarely focus on the complementary part-the 2D cavity, which is a new-born area with unprecedented opportunities. In this study, we have investigated the electric field inside a spacer-free 2D cavity consisting of a monolayer semiconductor and a gold film substrate. We have directly captured the built-in electric field crossing a blinking 2D cavity using a Kelvin probe force microscopy-Raman system. The simultaneously recorded morphology (M), electric field (E), and optical spectroscopy (O) mapping profile unambiguously reveals dynamical fluctuations of the interfacial electric field under a constant cavity height. Moreover, we have also prepared non-blinking 2D cavities and analyzed the gap-dependent electric field evolution with a gradual heating procedure, which further enhances the maximum electric field exceeding 109 V/m. Our work has revealed substantial insights into the built-in electric field within a 2D cavity, which will benefit adventures in electric-field-dependent interfacial sciences and future applications of 2D chemical nanoreactors.

4.
Nat Commun ; 14(1): 6701, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872139

RESUMO

Excitons in monolayer semiconductors, benefitting from their large binding energies, hold great potential towards excitonic circuits bridging nano-electronics and photonics. However, achieving room-temperature ultrafast on-chip electrical modulation of excitonic distribution and flow in monolayer semiconductors is nontrivial. Here, utilizing lateral bias, we report high-speed electrical modulation of the excitonic distribution in a monolayer semiconductor junction at room temperature. The alternating charge trapping/detrapping at the two monolayer/electrode interfaces induces a non-uniform carrier distribution, leading to controlled in-plane spatial variations of excitonic populations, and mimicking a bias-driven excitonic flow. This modulation increases with the bias amplitude and eventually saturates, relating to the energetic distribution of trap density of states. The switching time of the modulation is down to 5 ns, enabling high-speed excitonic devices. Our findings reveal the trap-assisted exciton engineering in monolayer semiconductors and offer great opportunities for future two-dimensional excitonic devices and circuits.

5.
Nano Lett ; 23(14): 6581-6587, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439779

RESUMO

Although selective singlet and triplet interlayer exciton (IX) emission of transition metal dichalcogenides (TMD) heterostructures can be achieved by applying an electric or magnetic field, the device structure is complex and a low temperature is usually required. Here, we demonstrate a simple all-optical approach to selectively enhance the emission of singlet and triplet IX by selectively coupling singlet or triplet IX of a WS2/WSe2 heterostructure to a SiO2 microsphere cavity. Angle-resolved photoluminescene reveals that the transition dipole of triplet IX is almost along the out-of-plane direction, while singlet IX only has 69% out-of-plane dipole moment contribution. Since the out-of-plane dipole presents a higher Purcell factor within the cavity, we can simultaneously enhance the emission intensity of IX and control the emissive IX species at room temperature in an all-optical route. Importantly, we demonstrate an all-optical valley polarization switch with a record high on/off ratio of 35.

6.
ACS Nano ; 17(11): 10783-10791, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259985

RESUMO

The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (∼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.

7.
Nat Commun ; 14(1): 1298, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894571

RESUMO

Electrochemical CO2 reduction (CO2R) to ethylene and ethanol enables the long-term storage of renewable electricity in valuable multi-carbon (C2+) chemicals. However, carbon-carbon (C-C) coupling, the rate-determining step in CO2R to C2+ conversion, has low efficiency and poor stability, especially in acid conditions. Here we find that, through alloying strategies, neighbouring binary sites enable asymmetric CO binding energies to promote CO2-to-C2+ electroreduction beyond the scaling-relation-determined activity limits on single-metal surfaces. We fabricate experimentally a series of Zn incorporated Cu catalysts that show increased asymmetric CO* binding and surface CO* coverage for fast C-C coupling and the consequent hydrogenation under electrochemical reduction conditions. Further optimization of the reaction environment at nanointerfaces suppresses hydrogen evolution and improves CO2 utilization under acidic conditions. We achieve, as a result, a high 31 ± 2% single-pass CO2-to-C2+ yield in a mild-acid pH 4 electrolyte with >80% single-pass CO2 utilization efficiency. In a single CO2R flow cell electrolyzer, we realize a combined performance of 91 ± 2% C2+ Faradaic efficiency with notable 73 ± 2% ethylene Faradaic efficiency, 31 ± 2% full-cell C2+ energy efficiency, and 24 ± 1% single-pass CO2 conversion at a commercially relevant current density of 150 mA cm-2 over 150 h.

8.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763975

RESUMO

The Leidenfrost effect describes a fascinating phenomenon in which a liquid droplet, when deposited onto a very hot substrate, will levitate on its own vapor layer and undergo frictionless movements. Driven by the significant implications for heat transfer engineering and drag reduction, intensive efforts have been made to understand, manipulate, and utilize the Leidenfrost effect on macrosized objects with a typical size of millimeters. The Leidenfrost effect of nanosized objects, however, remains unexplored. Herein, we report on an unprecedented Leidenfrost effect of single nanosized sulfur particles at room temperature. It was discovered when advanced dark-field optical microscopy was employed to monitor the dynamic sublimation process of single sulfur nanoparticles sitting on a flat substrate. Despite the phenomenological similarity, including the vapor-cushion-induced levitation and the extended lifetime, the Leidenfrost effect at the nanoscale exhibited two extraordinary features that were obviously distinct from its macroscopic counterpart. First, there was a critical size below which single sulfur nanoparticles began to levitate. Second, levitation occurred in the absence of the temperature difference between the nanoparticle and the substrate, which was barely possible for macroscopic objects and underscored the value of bridging the gap connecting the Leidenfrost effect and nanoscience. The sublimation-triggered spontaneous takeoff of single sulfur nanoparticles shed new light on its further applications, such as nanoflight.

9.
Sci Adv ; 8(47): eadc9755, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417536

RESUMO

DNA origami technology has rapidly developed into an ideal means to programmably crystallize nanoparticles. However, most existing DNA origami three-dimensional platforms normally used a single type of DNA origami unit, which greatly limits the types of nanoparticle superlattices that can be synthesized. Here, we report a universal strategy to vastly enrich the library of nanoparticle superlattices, based on multiple-unit (≥4 units) DNA origami platforms, which were constructed by programmably cocrystallizing three different DNA origami octahedral "homologs." Through selectively inserting nanoparticles into DNA origami monomers, numerous nanoparticle superlattices can be synthesized on the basis of the same platform. In this work, we obtained 85 types of DOF/AuNP (DNA origami frame/gold nanoparticle) superlattices using three different DNA origami platforms as examples. We believe that our strategy can provide possible access to fabricate virtually endless types of nanoparticle superlattices and promote the construction of functional materials with special properties.

10.
J Am Chem Soc ; 144(28): 12747-12755, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35815841

RESUMO

The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.

11.
Angew Chem Int Ed Engl ; 61(34): e202207300, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35761506

RESUMO

To enhance the fluorescence efficiency of semiconductor nanocrystal quantum dots (QDs), strategies via enhancing photo-absorption and eliminating non-radiative relaxation have been proposed. In this study, we demonstrate that fluorescence efficiency of molybdenum disulfide quantum dots (MoS2 QDs) can be enhanced by single-atom metal (Au, Ag, Pt, Cu) modification. Four-fold enhancement of the fluorescence emission of MoS2 QDs is observed with single-atom Au modification. The underlying mechanism is ascribed to the passivation of non-radiative surface states owing to the new defect energy level of Au in the forbidden band that can trap excess electrons in n-type MoS2 , increasing the recombination probability of conduction band electrons with valence band holes of MoS2 . Our results open an avenue for enhancing the fluorescence efficiency of QDs via the modification of atomically dispersed metals, and extend their scopes and potentials in a fundamental way for economic efficiency and stability of single-atom metals.

12.
Nat Commun ; 13(1): 3330, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680880

RESUMO

Sensitive detection of local acoustic vibrations at the nanometer scale has promising potential applications involving miniaturized devices in many areas, such as geological exploration, military reconnaissance, and ultrasound imaging. However, sensitive detection of weak acoustic signals with high spatial resolution at room temperature has become a major challenge. Here, we report a nanometer-scale system for acoustic detection with a single molecule as a probe based on minute variations of its distance to the surface of a plasmonic gold nanorod. This system can extract the frequency and amplitude of acoustic vibrations with experimental and theoretical sensitivities of 10 pm Hz-1/2 and 10 fm Hz-1/2, respectively. This approach provides a strategy for the optical detection of acoustic waves based on molecular spectroscopy without electromagnetic interference. Moreover, such a small nano-acoustic detector with 40-nm size can be employed to monitor acoustic vibrations or read out the quantum states of nanomechanical devices.


Assuntos
Ressonância de Plasmônio de Superfície , Vibração , Acústica , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Temperatura
13.
Sci Adv ; 8(2): eabl7707, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030029

RESUMO

Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet­NiPS3, from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS3. Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.

14.
Nano Lett ; 21(16): 6773-6780, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382814

RESUMO

Polarity often refers to the charge carrier type of a semiconductor or the charging state of a functional group, generally dominating their functionality and performance. Herein we uncover a spontaneous and stochastic polarity-flipping phenomenon in monolayer WSe2, which randomly switches between the n-type and p-type states and is essentially triggered by fluctuating carrier flows from or to the adjacent WS2 monolayer. We have traced such fluctuating carrier flows by interfacial photocurrent measurements in a zero-bias two-terminal device. Such polarity flipping results in switching between the negative and positive correlations between the emission intensities of WS2 and WSe2 in the heterobilayer, which is further well-controlled by the electrostatic gate-tuning experiments in a capacitor-structure device. Our work not only demonstrates giant and intermittent carrier flows through long-range coupling in 2D heterostructures and a consequent spontaneous polarity flipping phenomenon but also provides a two-emitter system with a switchable correlation sign that could project future applications in optical logic devices.

15.
ACS Appl Mater Interfaces ; 13(34): 40922-40931, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410699

RESUMO

The capability to manipulate the size of the electronic band gap is of importance to semiconductor technology. Among these, a wide direct band gap is particularly helpful in optoelectronic devices due to the efficient utilization of blue and ultraviolet light. Here, we reported a paraffin-enabled compressive folding (PCF) strategy to widen the band gap of two-dimensional (2D) materials. Due to the large thermal expansion coefficient of paraffin, folded 2D materials can be achieved via thermal engineering of the paraffin-assisted transfer process. It can controllably introduce 0.2-1.3% compressive strain onto folded structures depending on the temperature differences and transfer the folding product to both rigid and soft substrates. Exemplified by MoS2, its folded multilayers demonstrated blue-shifts at direct gap transition peaks, six times stronger photoluminescence intensity, almost double mobility, and 20 times higher photoresponsivity over unfolded MoS2. This PCF strategy can attain controllable widening band gap of 2D materials, which will open up novel applications in optoelectronics.

16.
Nat Commun ; 12(1): 4890, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385451

RESUMO

Low-dimensional hybrid perovskites have demonstrated excellent performance as white-light emitters. The broadband white emission originates from self-trapped excitons (STEs). Since the mechanism of STEs formation in perovskites is still not clear, preparing new low-dimensional white perovskites relies mostly on screening lots of intercalated organic molecules rather than rational design. Here, we report an atom-substituting strategy to trigger STEs formation in layered perovskites. Halogen-substituted phenyl molecules are applied to synthesize perovskite crystals. The halogen-substituents will withdraw electrons from the branched chain (-R-NH3+) of the phenyl molecule. This will result in positive charge accumulation on -R-NH3+, and thus stronger Coulomb force of bond (-R-NH3+)-(PbBr42-), which facilitates excitons self-trapping. Our designed white perovskites exhibit photoluminescence quantum yield of 32%, color-rendering index of near 90 and chromaticity coordinates close to standard white-light. Our joint experiment-theory study provides insights into the STEs formation in perovskites and will benefit tailoring white perovskites with boosting performance.

17.
ACS Appl Mater Interfaces ; 12(23): 25700-25708, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407067

RESUMO

Aqueous rechargeable lithium-ion batteries (ARLIBs) as alternative energy storage devices have attracted tremendous attention because of their low cost and high safety. However, it is still a significant challenge to develop flexible high-performance ARLIBs for powering wearable devices because of the lack of all binder-free electrode materials. In this study, we develop one-step hydro-/solvothermal methods to design binder-free electrodes of LiCoO2 polygonal-sheeted arrays and rugby ball-shaped NaTi2(PO4)3 on carbon nanotube fibers as the cathode (LCO@CNTF) and the anode (NTP@CNTF). Both the electrodes are prepared at low temperatures without an extra calcination process, which is a great improvement for the growth process. The electrodes deliver remarkable capacity and extraordinary rate performance in a saturated Li2SO4 solution. Meanwhile, because of the synergy of LCO@CNTF and NTP@CNTF, an impressive capacity of 45.24 mA h cm-3 and an admirable energy density of 67.86 mW h cm-3 are achieved for the assembled quasi-solid-state fiber-shaped flexible ARLIB (FARLIB), which outperform most reported fiber-shaped aqueous rechargeable batteries. More encouragingly, our FARLIB possesses good flexibility, with a 94.74% capacity retention after bending 3000 times. Thus, this work represents a significant step toward developing FARLIBs and provides a new prospect in the design of wearable energy storage devices.

18.
Nat Commun ; 9(1): 753, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467477

RESUMO

Transition metal dichalcogenides have valley degree of freedom, which features optical selection rule and spin-valley locking, making them promising for valleytronics devices and quantum computation. For either application, a long valley polarization lifetime is crucial. Previous results showed that it is around picosecond in monolayer excitons, nanosecond for local excitons and tens of nanosecond for interlayer excitons. Here we show that the dark excitons in two-dimensional heterostructures provide a microsecond valley polarization memory thanks to the magnetic field induced suppression of valley mixing. The lifetime of the dark excitons shows magnetic field and temperature dependence. The long lifetime and valley polarization lifetime of the dark exciton in two-dimensional heterostructures make them promising for long-distance exciton transport and macroscopic quantum state generations.

19.
Nano Lett ; 18(3): 1686-1692, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376381

RESUMO

Modulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10-100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump-probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.

20.
Small ; 13(35)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28639278

RESUMO

The gate-tunable phonon properties in bilayer MoS2 are shown to be dependent on excitation energy. Raman intensity, Raman shift, and linewidth are affected by resonant excitation, while a nonresonant laser does not influence the intensity significantly. The gate-dependent Raman shift of A1g mode (either blue-, red-, or no-shift) is a result of the combined effect of antibonding electron and resonant-related decoupling effect. Although the decoupling effect cannot be directly measured due to the resonant background, it can be indirectly and qualitatively probed by observing A1g mode. This study on gate-tunable resonant Raman spectroscopy has clarified the influence of carrier doping on phonon properties and demonstrates a new degree of freedom in manipulating phonons in 2D material systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA