Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Small ; : e2311087, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335310

RESUMO

Herein, a type of light- and heat-driven flexible supramolecular polymer with reversibly long-lived phosphorescence and photochromism is constructed from acrylamide copolymers with 4-phenylpyridinium derivatives containing a cyano group (P-CN, P-oM, P-mM), sulfobutylether-ß-cyclodextrin (SBCD), and polyvinyl alcohol (PVA). Compared to their parent solid polymers, these flexible supramolecules based on the non-covalent cross-linking of copolymers, SBCD, and PVA efficiently boost the phosphorescence lifetimes (723.0 ms for P-CN, 623.0 ms for P-oM, 945.8 ms for P-mM) through electrostatic interaction and hydrogen bonds. The phosphorescence intensity/lifetime, showing excellent responsiveness to light and heat, sharply decreased after irradiation with a 275 nm flashlight or sunlight and gradually recovered through heating. This is accompanied by the occurrence and fading of visible photochromism, manifesting as dark green for P-CN and pink for P-oM and P-mM. These reversible photochromism and phosphorescence behaviors are mainly attributed to the generation and disappearance of organic radicals in the 4-phenylpyridinium derivatives with a cyano group, which can guide tunable luminescence and photochromism.

2.
Acta Pharm Sin B ; 13(10): 4217-4233, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799381

RESUMO

Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.

3.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2398-2404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899105

RESUMO

The use of artificial cyanobacteria crusts is one of the effective methods to prevention and control of desertification. Soil fine substance is one of the important factors limiting the colonization and growth of artificial cyanobacteria crusts. We compared the growth of artificial cyanobacterial crusts with different fine substance contents by setting the volume ratios of fine substance to quicksand as 0:1, 1:1, 2:1, 4:1 and 1:0. The results showed that the cover of artificial cyanobacteria crusts increased gradually with the increases of fine substance contents, while the contents of chlorophyll a and extracellular polysaccharide firstly increased and then decreased slightly. The optimum growth of artificial cyanobacterial crusts was achieved under the treatment of 4:1 ratio. Under such treatment after 60 days of incubation, artificial cyanobacteria crusts cover was 70%, and the contents of chlorophyll a, loosely bound exopolysaccharide (LB-EPS), tightly bound exopolysaccharide (TB-EPS), and glycocalyx exopolysaccharide (G-EPS) were 17.5, 70.0, 175.0, and 200.0 µg·cm-2, respectively. Increasing the amount of cyanobacteria under the condition of low fine substance content could promote the formation and growth of artificial cyanobacterial crusts (0.5 g of cyanobacteria per petri dish was the optimal). It could provide a new idea for the large-scale culture of artificial cyanobacterial crusts inoculum.


Assuntos
Cianobactérias , Solo , Clorofila A/metabolismo , Solo/química , Microbiologia do Solo
4.
EBioMedicine ; 92: 104587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149929

RESUMO

BACKGROUND: Metastasis is one of the most lethal hallmarks of esophageal squamous cell carcinoma (ESCC), yet the mechanisms remain unclear due to a lack of reliable experimental models and systematic identification of key drivers. There is urgent need to develop useful therapies for this lethal disease. METHODS: A genome-wide CRISPR/Cas9 screening, in combination with gene profiling of highly invasive and metastatic ESCC sublines, as well as PDX models, was performed to identify key regulators of cancer metastasis. The Gain- and loss-of-function experiments were taken to examine gene function. Protein interactome, RNA-seq, and whole genome methylation sequencing were used to investigate gene regulation and molecular mechanisms. Clinical significance was analyzed in tumor tissue microarray and TCGA databases. Homology modeling, modified ELISA, surface plasmon resonance and functional assays were performed to identify lead compound which targets MEST to suppress cancer metastasis. FINDINGS: High MEST expression was associated with poor patient survival and promoted cancer invasion and metastasis in ESCC. Mechanistically, MEST activates SRCIN1/RASAL1-ERK-snail signaling by interacting with PURA. miR-449a was identified as a direct regulator of MEST, and hypermethylation of its promoter led to MEST upregulation, whereas systemically delivered miR-449a mimic could suppress tumor metastasis without overt toxicity. Furthermore, molecular docking and computational screening in a small-molecule library of 1,500,000 compounds and functional assays showed that G699-0288 targets the MEST-PURA interaction and significantly inhibits cancer metastasis. INTERPRETATION: We identified the MEST-PURA-SRCIN1/RASAL1-ERK-snail signaling cascade as an important mechanism underlying cancer metastasis. Blockade of MEST-PURA interaction has therapeutic potential in management of cancer metastasis. FUNDING: This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900, 2017YFA0505100); National Natural Science Foundation of China (31961160727, 82073196, 81973339, 81803551); NSFC/RGC Joint Research Scheme (N_HKU727/19); Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035); Key Laboratory of Guangdong Higher Education Institutes of China (2021KSYS009).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Simulação de Acoplamento Molecular , Sistemas CRISPR-Cas , Detecção Precoce de Câncer , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
5.
Chem Commun (Camb) ; 59(31): 4680-4683, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36995105

RESUMO

Possessing dual-targeted agents toward the lysosome and cancer cells, a ternary supramolecular assembly was constructed by a morpholine-modified permethyl ß-cyclodextrin, sulfonated porphyrin, and folic acid-modified chitosan via multivalent interactions. As compared with free porphyrin, the obtained ternary supramolecular assembly showed promoted photodynamic effect and achieved dual-targeted precise imaging in cancer cells.


Assuntos
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Antineoplásicos/farmacologia , Porfirinas/farmacologia , Morfolinas/farmacologia
6.
Oncogene ; 42(14): 1101-1116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792757

RESUMO

Although N4-acetylcytidine (ac4C) modification affects the stability and translation of mRNA, it is unknown whether it exists in noncoding RNAs, and its biological function is unclear. Here, nucleotide-resolution method for profiling CTC-490G23.2 ac4C sites and gain- and loss-of-function experiments revealed that N-acetyltransferase 10 (NAT10) is responsible for ac4C modification of long noncoding RNAs (lncRNAs). NAT10-mediated ac4C modification leads to the stabilization and overexpression of lncRNA CTC-490G23.2 in primary esophageal squamous cell carcinoma (ESCC) and its further upregulation in metastatic tissues. CTC-490G23.2 significantly promotes cancer invasion and metastasis in vitro and in vivo. Mechanistically, CTC-490G23.2 acts as a scaffold to increase the binding of CD44 pre-mRNA to polypyrimidine tract-binding protein 1 (PTBP1), resulting in a oncogenic splicing switch from the standard isoform CD44s to the variant isoform CD44v(8-10). CD44v(8-10), but not CD44s, binds to and increases the protein stability of vimentin. Expression levels of CTC-490G23.2 and CD44v(8-10) can predict poor prognosis in cancer patients. Furthermore, the antisense oligonucleotide (ASO)/SV40-LAH4-L1 peptide self-assembled nanocomplexes targeting CTC490G23.2 exerts a significantly suppressive effect on cancer metastasis. The outcome of this study will provide new mechanistic insight into the ac4C modification of lncRNAs and useful clues for the development of novel systemic therapies and prognostic biomarkers.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Processamento Alternativo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Isoformas de Proteínas/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
7.
Mol Cell Biochem ; 478(1): 197-214, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771397

RESUMO

Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.


Assuntos
Metformina , Neoplasias , Humanos , Metformina/farmacologia , Morte Celular , Apoptose , Neoplasias/patologia , Hipoglicemiantes/farmacologia , Autofagia
8.
Mini Rev Med Chem ; 23(10): 1137-1152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173048

RESUMO

BACKGROUND: The chemotherapy modality is generally used for treating colorectal cancer. However, the clinical application of chemotherapeutic drugs may be limited due to their adverse effects on normal cells/tissues and the development of cancer resistance. Using the combined treatment of chemotherapy drugs and natural bioactive compounds (such as resveratrol) can alleviate adverse drug reactions and induce synergies between the drugs. OBJECTIVE: In the current review, the potential therapeutic impacts of resveratrol during colorectal cancer chemotherapy were studied. METHODS: Based on the PRISMA guideline, we performed a systematic search in different electronic databases up to May, 2021. Following the search, 321 papers were found and then screened for eligibility. Twenty-seven papers were finally included in the present study Results: Compared to the control group, the growth inhibition of cancerous cells treated with chemotherapeutic drugs was considerably higher, and resveratrol co-administration synergistically increased chemotherapy-induced cytotoxicity. Moreover, a reduction in the tumor weight, volume and growth of mice was observed following chemotherapy administration compared to the untreated groups, and these reductions were predominant in animals treated with resveratrol plus chemotherapy. Other findings showed that chemotherapy alone and in combination with resveratrol modulated the cell cycle profile of cancerous cells. Furthermore, chemotherapy treatment induced a set of biochemical and histopathological alterations in cancer cells/tissues, and these changes were synergized following resveratrol co-treatment (in most of the cases), excluding inflammatory mediators. CONCLUSION: In most cases, resveratrol co-administration could sensitize cancerous cells to chemotherapy drugs through its oxidant, apoptosis, anti-inflammatory activities, etc. Nevertheless, suggesting the use of resveratrol during chemotherapy of colorectal cancer patients requires further clinical studies.


Assuntos
Neoplasias Colorretais , Humanos , Animais , Neoplasias Colorretais/tratamento farmacológico , Resveratrol/uso terapêutico , Antineoplásicos/uso terapêutico
9.
Expert Rev Neurother ; 22(11-12): 1031-1041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36469637

RESUMO

BACKGROUND: Previous studies indicated inconsistent results for the treatment effect of repetitive transcranial magnetic stimulation (rTMS) on attention and memory impairment following stroke. METHODS: Randomized controlled trials (RCTs) on TMS for the treatment of stroke were retrieved from Online databases. Data were analyzed by RevMan 5.3 software. RESULTS: Ten RCTs performed in China were included, with a total of 591 younger post-stroke patients ranging in age from their 40s to their 60s. The meta-analysis indicated that TMS could significantly improve the recovery of cognitive impairment following a stroke, according to the Montreal Cognitive Assessment (MoCA) score (8 studies, MD = 2.69, 95% CI: 1.44 to 3.95, P < 0.0001), the Rivermead Behavioral Memory Test (RBMT) score (7 studies, MD = 1.74, 95% CI:1.13 to 2.34, P < 0.00001), and the Modified Barthel Index (MBI) for Activities of Daily Living (3 studies, MD = 8.83, 95% CI:5.34 to 12.32, P < 0.00001). Sub-group analysis of MoCA and RBMT suggested that a low-frequency (1 Hz) stimulation exhibited similar effect with a higher-frequency (10 Hz) treatment. DISCUSSION: TMS might effectively improve the attention and memory impairment of stroke patients without increasing side effects. But this effect needs to be verified by more multi-center, high-quality, large-sample, rigorously designed RCTs.


Assuntos
Disfunção Cognitiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estimulação Magnética Transcraniana/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Transtornos da Memória/etiologia , Disfunção Cognitiva/etiologia , Atenção
10.
Adv Sci (Weinh) ; 9(34): e2202528, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270974

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors in the world, with high prevalence and low 5-year survival. Most of the CRC patients show excessive activation of the Wnt/ß-catenin pathway which is a vital target for CRC treatment. Based on multiple CRC cell lines with different nuclear expression of ß-catenin, NU2058 is identified from a small molecule library consisting of 280 bioactive compounds and found to selectively inhibit the proliferation of CRC cells with nuclear ß-catenin activation in vitro and in vivo. The translational significance of NU2058 alone or in combination with chemotherapeutic drugs oxaliplatin and irinotecan (SN38) in CRC is demonstrated in orthotopic tumor model and patient-derived xenograft models. By integrating limited proteolysis-small molecule mapping (LiP-SMap) and mass spectrometry (MS), Ran-binding protein 3 (RanBP3) is identified as the direct target of NU2058. The results show that RanBP3 is a tumor suppressor in CRC and is associated with patient survival. Mechanistically, NU2058 increases the interaction of RanBP3 and ß-catenin to promote nuclear export of ß-catenin, which further inhibits transcription of c-Myc and cyclin D1 to induce cell senescence. Collectively, NU2058 may serve as a promising therapeutic agent for CRC patients with selective disruption of pathologic Wnt/ß-catenin signaling.


Assuntos
Senescência Celular , Neoplasias Colorretais , Proteínas Nucleares , Proteínas de Transporte Nucleocitoplasmático , beta Catenina , Humanos , Animais , Carcinogênese , Via de Sinalização Wnt
11.
Expert Rev Neurother ; 22(10): 875-888, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36242781

RESUMO

BACKGROUND: This study aims to explore the treatment efficacy of different motor rehabilitation interventions for upper limb impairment recovery. RESEARCH DESIGN & METHODS: Publications were searched in PubMed and Embase. 4 grouped motor rehabilitation treatments (training, technological intervention, pharmacological intervention, and neuromodulation) were compared. The change of the Fugl-Meyer Assessment Scale for Upper Extremity (FMA-UE) was applied to assess upper limb function after stroke. RESULTS: 56 studies including 5292 patients were identified. A significant difference was found among the 4 groups (P = 0.02). Neuromodulation interventions had the best treatment efficacy among the 4 types of interventions (P < 0.01). Among neuromodulation interventions, acupuncture, electric, or magnetic intervention all had therapeutic efficacy for stroke upper limb recovery, without significant subgroup difference (P = 0.34). Stroke patients with mild upper limb impairment might not benefit from motor rehabilitation (P = 0.14). CONCLUSION: Neuromodulation interventions might have the best therapeutic efficacy among motor rehabilitation treatments for upper limb impairment after stroke. It is a potential treatment direction for upper limb recovery among stroke patients. However, since a large proportion of the original studies are low to very low-quality evidence, large-scale RCTs should be conducted in the future to validate current findings and assess treatment effects based on patient characteristics.


Assuntos
Acidente Vascular Cerebral , Extremidade Superior , Humanos , Resultado do Tratamento , Acidente Vascular Cerebral/terapia
13.
Front Microbiol ; 13: 843417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464991

RESUMO

With its low-cost, label-free and non-destructive features, Raman spectroscopy is becoming an attractive technique with high potential to discriminate the causative agent of bacterial infections and bacterial infections per se. However, it is challenging to achieve consistency and accuracy of Raman spectra from numerous bacterial species and phenotypes, which significantly hinders the practical application of the technique. In this study, we analyzed surfaced enhanced Raman spectra (SERS) through machine learning algorithms in order to discriminate bacterial pathogens quickly and accurately. Two unsupervised machine learning methods, K-means Clustering (K-Means) and Agglomerative Nesting (AGNES) were performed for clustering analysis. In addition, eight supervised machine learning methods were compared in terms of bacterial predictions via Raman spectra, which showed that convolutional neural network (CNN) achieved the best prediction accuracy (99.86%) with the highest area (0.9996) under receiver operating characteristic curve (ROC). In sum, machine learning methods can be potentially applied to classify and predict bacterial pathogens via Raman spectra at general level.

15.
Org Lett ; 24(11): 2143-2148, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35274952

RESUMO

Herein, the first example using commercially available 2-bromo-3,3,3-trifluoropropene (BTP) as a radical acceptor has been reported. Taking advantage of this strategy, a wide range of secondary trifluoromethylated alkyl bromides were synthesized in good to excellent yields with broad functional group tolerance by using redox-active esters as a radical precursor. The practicality of this protocol was further demonstrated by diverse derivations and direct modification of biologically active molecules.


Assuntos
Brometos , Ésteres , Oxirredução
16.
Exp Mol Med ; 54(3): 216-225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35352001

RESUMO

Cancer is one of the most difficult diseases in human society. Therefore, it is urgent for us to understand its pathogenesis and improve the cure rate. Exosomes are nanoscale membrane vesicles formed by a variety of cells through endocytosis. As a new means of intercellular information exchange, exosomes have attracted much attention. Noncoding RNAs exist in various cell compartments and participate in a variety of cellular reactions; in particular, they can be detected in exosomes bound to lipoproteins and free circulating molecules. Increasing evidence has suggested the potential roles of exosomal noncoding RNAs in the progression of tumors. Herein, we present a comprehensive update on the biological functions of exosomal noncoding RNAs in the development of cancer. Specifically, we mainly focus on the effects of exosomal noncoding RNAs, including microRNAs, circular RNAs, long noncoding RNAs, small nuclear RNAs, and small nucleolar RNAs, on tumor growth, metastasis, angiogenesis, and chemoresistance. Moreover, we outline the current clinical implications concerning exosomal noncoding RNAs in cancer treatment.


Assuntos
Exossomos , Neoplasias , RNA Longo não Codificante , Exossomos/genética , Exossomos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
17.
Cancer Cell Int ; 22(1): 126, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305641

RESUMO

Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.

18.
Angew Chem Int Ed Engl ; 61(6): e202115265, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874598

RESUMO

A series of solid supramolecules based on acrylamide-phenylpyridium copolymers with various substituent groups (P-R: R=-CN, -CO2 Et, -Me, -CF3 ) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P-R/CB[7] (R=-CN, -CO2 Et, -Me), P-CF3 /CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host-guest interaction between 4-phenylpyridium with -CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.

19.
Signal Transduct Target Ther ; 6(1): 425, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916492

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
MedComm (2020) ; 2(3): 315-340, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766149

RESUMO

Cancer is a leading cause of death worldwide. Surgery is the primary treatment approach for cancer, but the survival rate is very low due to the rapid progression of the disease and presence of local and distant metastasis at diagnosis. Adjuvant chemotherapy and radiotherapy are important components of the multidisciplinary approaches for cancer treatment. However, resistance to radiotherapy and chemotherapy may result in treatment failure or even cancer recurrence. Radioresistance in cancer is often caused by the repair response to radiation-induced DNA damage, cell cycle dysregulation, cancer stem cells (CSCs) resilience, and epithelial-mesenchymal transition (EMT). Understanding the molecular alterations that lead to radioresistance may provide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. Patients who develop resistance to chemotherapy drugs cannot benefit from the cytotoxicity induced by the prescribed drug and will likely have a poor outcome with these treatments. Chemotherapy often shows a low response rate due to various drug resistance mechanisms. This review focuses on the molecular mechanisms of radioresistance and chemoresistance in cancer and discusses recent developments in therapeutic strategies targeting chemoradiotherapy resistance to improve treatment outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA