Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 624: 121993, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35811040

RESUMO

Despite a well-established process understanding, quality issues for compressed oral solid dosage forms are frequently encountered during various drug product development and production stages. In the current work, a non-destructive contact ultrasonic experimental rig integrated with a collaborative robot arm and an advanced vision system is presented and employed to quantify the effect of the shape of a compressed tablet on its mechanical properties. It is observed that these properties are affected by the tablet geometric shapes and found to be linearly sensitive to the compaction pressures. It is demonstrated that the presented approach significantly improves the repeatability of the experimental waveform acquisition. In addition, with the increased confidence levels in waveform acquisition accuracy and corresponding pressure and shear wave speeds due to improved measurement repeatability, we conclude that pharmaceutical compact materials can indeed have a negative Poisson's ratio, therefore can be auxetic. The presented technique and instrument could find critical applications in continuous tablet manufacturing, and its real-time quality monitoring as measurement repeatability has been significantly improved, minimizing product quality variations.


Assuntos
Tecnologia Farmacêutica , Ultrassom , Fenômenos Físicos , Pressão , Comprimidos , Tecnologia Farmacêutica/métodos
2.
Int J Pharm ; 575: 118993, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884061

RESUMO

Despite a well-established manufacturing-process understanding, tablet quality issues are frequently encountered during various stages of drug-product development. Compact breaking force (tensile strength), capping and friability are among the commonly observed characteristics that determine the integrity, quality and manufacturability of tablets. In current study, a design space of the compaction pressure, compaction speed and head flat types is introduced for solid dosage compacts prepared from pure silicified microcrystalline cellulose, a popular tableting excipient. In the reported experiments, five types of head flat types at six compaction pressure levels and two compaction speeds were employed and their effects on compact mechanical properties evaluated. The mechanical properties of the tablets were obtained non-destructively. It is demonstrated these properties correlate well with compact porosity and tensile strength, thus their availability is of practical value. The reported mechanical properties are observed to be linearly sensitive to the tableting speed and compaction pressure, and their dependency on the head-flat profile, while clearly visible in the presented waveforms, was found to be nonlinear in the range of the parameter space. In this study, we detail a non-destructive, easy-to-use approach for characterizing the porosity and tensile strength of pharmaceutical tablets.


Assuntos
Celulose/química , Comprimidos/química , Tecnologia Farmacêutica/métodos , Fenômenos Físicos , Porosidade , Resistência à Tração , Ultrassom
3.
Int J Pharm ; 553(1-2): 338-348, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30367987

RESUMO

Capping is a common mechanical defect in tablet manufacturing, exhibited during or after the compression process. Predicting tablet capping in terms of process variables (e.g. compaction pressure and speed) and formulation properties is essential in pharmaceutical industry. In current work, a non-destructive contact ultrasonic approach for detecting capping risk in the pharmaceutical compacts prepared under various compression forces and speeds is presented. It is shown that the extracted mechanical properties can be used as early indicators for invisible capping (prior to visible damage). Based on the analysis of X-ray cross-section images and a large set of waveform data, it is demonstrated that the mechanical properties and acoustic wave propagation characteristics is significantly modulated by the tablet's internal cracks and capping at higher compaction speeds and pressures. In addition, the experimentally extracted properties were correlated to the directly-measured porosity and tensile strength of compacts of Pearlitol®, Anhydrous Mannitol and LubriTose® Mannitol, produced at two compaction speeds and at three pressure levels. The effect compaction speed and pressure on the porosity and tensile strength of the resulting compacts is quantified, and related to the compact acoustic characteristics and mechanical properties. The detailed experimental approach and reported wave propagation data could find key applications in determining the bounds of manufacturing design spaces in the development phase, predicting capping during (continuous) tablet manufacturing, as well as online monitoring of tablet mechanical integrity and reducing batch-to-batch end-product quality variations.


Assuntos
Química Farmacêutica/métodos , Excipientes/química , Manitol/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Porosidade , Pressão , Comprimidos , Resistência à Tração
4.
Int J Pharm ; 542(1-2): 153-163, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29535040

RESUMO

Currently, the compressed tablet and its oral administration is the most popular drug delivery modality in medicine. The accurate porosity and tensile strength characterization of a tablet design is vital for predicting its performance such as disintegration, dissolution, and drug-release efficiency upon administration as well as ensuring its mechanical integrity. In current work, a non-destructive contact ultrasonic approach and an associated testing procedure are presented and employed to quantify and relate the acoustically extracted mechanical properties of pharmaceutical compacts to direct porosity and tensile strength measurements. Based on a comprehensive set of experimental data, it is demonstrated how strongly the acoustic wave propagation is modulated and correlated to the tablet porosity and tensile strength of a compact made using spray-dried lactose and microcrystalline cellulose with varying mixture ratios. The effect of mixing ratio on the porosity and tensile strength on the resulting compacts is quantified and, with the acoustic experimental data, mixing ratio is related to the compact ultrasonic characteristics. The ultrasonic techniques provide a rapid, non-destructive means for evaluating compacts in formulation development and manufacturing. The presented approach and data could find critical applications in continuous tablet manufacturing, its real-time quality monitoring, as well as minimizing batch-to-batch quality variations.


Assuntos
Comprimidos/química , Tecnologia Farmacêutica/métodos , Ondas Ultrassônicas , Celulose/química , Liberação Controlada de Fármacos , Lactose/química , Porosidade , Controle de Qualidade , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA