RESUMO
BACKGROUND: Cyclin C (CCNC) was reported to take part in regulating mitochondria-derived oxidative stress under cisplatin stimulation. However, its effect in gastric cancer is unknown. This study aimed to investigate the role of cyclin C and its ubiquitylation in regulating cisplatin resistance in gastric cancer. METHODS: The interaction between HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (HACE1) and cyclin C was investigated by GST pull-down assay, co-immunoprecipitation and ubiquitylation assay. Mitochondria-derived oxidative stress was studied by MitoSOX Red assay, seahorse assay and mitochondrial membrane potential measurement. Cyclin C-associated cisplatin resistance was studied in vivo via xenograft. RESULTS: HACE1 catalysed the ubiquitylation of cyclin C by adding Lys11-linked ubiquitin chains when cyclin C translocates to cytoplasm induced by cisplatin treatment. The ubiquitin-modified cyclin C then anchor at mitochondira, which induced mitochondrial fission and ROS synthesis. Depleting CCNC or mutation on the ubiquitylation sites decreased mitochondrial ROS production and reduced cell apoptosis under cisplatin treatment. Xenograft study showed that disrupting cyclin C ubiquitylation by HACE1 conferred impairing cell apoptosis response upon cisplatin administration. CONCLUSIONS: Cyclin C is a newly identified substrate of HACE1 E3 ligase. HACE1-mediated ubiquitylation of cyclin C sheds light on a better understanding of cisplatin-associated resistance in gastric cancer patients. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. With cisplatin-induced nuclear-mitochondrial translocation of cyclin C, its ubiquitylation by HACE1 increased mitochondrial fission and mitochondrial-derived oxidative stress, leading to cell apoptosis.
Assuntos
Cisplatino , Neoplasias Gástricas , Cisplatino/farmacologia , Ciclina C/genética , Humanos , Neoplasias Gástricas/tratamento farmacológico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic generalized epilepsies and the potential underlying mechanism for phenotypic variation. Methods: Whole-exome sequencing was performed in a cohort of 88 patients with idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined using two-electrode voltage-clamp recordings. The alterations of protein expression were detected by immunofluorescence staining and biotinylation. Previous studies reported that epilepsy related GRIN2A missense mutations were reviewed. The correlation among phenotypes, functional alterations, and molecular locations was analyzed. Results: Three novel heterozygous missense GRIN2A mutations (c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W) were identified in three unrelated cases. Electrophysiological analysis demonstrated R1067W significantly increased the current density of GluN1/GluN2A NMDARs. Immunofluorescence staining indicated GluN2A mutants had abundant distribution in the membrane and cytoplasm. Western blotting showed the ratios of surface and total expression of the three GluN2A-mutants were significantly increased comparing to the wild type. Further analysis on the reported missense mutations demonstrated that mutations with severe gain-of-function were associated with epileptic encephalopathy, while mutations with mild gain of function were associated with mild phenotypes, suggesting a quantitative correlation between gain-of-function and phenotypic severity. The mutations located around transmembrane domains were more frequently associated with severe phenotypes and absence seizure-related mutations were mostly located in carboxyl-terminal domain, suggesting molecular sub-regional effects. Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic gene of idiopathic generalized epilepsies. The functional quantitative correlation and the molecular sub-regional implication of mutations helped in explaining the relatively mild clinical phenotypes and incomplete penetrance associated with GRIN2A variants.
RESUMO
A palladium-catalyzed asymmetric Markovnikov hydroaminocarbonylation of alkenes with anilines has been developed for the atom-economical synthesis of 2-substituted propanamides bearing an α-stereocenter. A novel phosphoramidite ligand L16 was discovered which exhibited very high reactivity and selectivity in the reaction. This asymmetric Markovnikov hydroaminocarbonylation employs readily available starting materials and tolerates a wide range of functional groups, thus providing a facile and straightforward method for the regio- and enantioselective synthesis of 2-substituted propanamides under ambient conditions. Mechanistic studies revealed that the reaction proceeds through a palladium hydride pathway.
RESUMO
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling-Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling-Daba Mountains of Central China.
RESUMO
Nonsense-mediated mRNA decay (NMD) is originally identified as a widespread mRNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons (PTCs) rapidly, which protects the cells from the accumulation of truncated proteins. Recent studies show that NMD can also regulate the degradation of normal gene transcripts, which execute important cellular and physiological functions. Therefore, NMD is considered as a highly conserved post-transcriptional regulatory mechanism in eukaryotes. NMD modulates 3% to 20% of the transcriptome from yeast to human directly or indirectly, which is essential for various physiological processes, such as cell homeostasis, stress response, proliferation, and differentiation. NMD can regulate the level of transcripts that involves in development, and single knockout of most NMD factors has an embryonic lethal effect. NMD plays an important role in the self-renewal, differentiation of embryonic stem cells and is critical during embryonic development. In this review, we summarized the latest advances in the roles and mechanisms of NMD in embryonic development, in order to provide new ideas for the research on embryonic development and the treatment of embryonic development related diseases.
Assuntos
Desenvolvimento Embrionário , Degradação do RNAm Mediada por Códon sem Sentido , Códon sem Sentido , Humanos , RNA Mensageiro , TranscriptomaRESUMO
Paeonia ostii is a traditional ornamental and medicinal species that has attracted considerable interest for its high oil value. To facilitate the effective and rational cultivation and application of P. ostii in China, it is necessary to determine its potential spatial habitat distribution and environmental requirements. Using high-resolution environmental data for current and future climate scenarios, the potential suitable area and climatic requirements of P. ostii were modelled. Among the 11 environmental variables investigated, growing degree days, precipitation of the wettest month, mean temperature of the coldest quarter, global UV-B radiation, annual precipitation, and soil pH played major roles in determining the suitability of a habitat for the cultivation of P. ostii. Under the current environmental conditions in China, a total area of 20.31 × 105 km2 is suitable for growing P. ostii, accounting for 21.16% of the country's total land area. Under the two future climate scenario/year combinations (i.e., representative concentration pathways [RCPs], RCP2.6 and RCP8.5 in 2050), this species would increase its suitable area at high latitudes while decrease at low latitudes. These results present valuable information and a theoretical reference point for identifying the suitable cultivation areas of P. ostii.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Paeonia/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Altitude , China , Mudança Climática , Geografia , Concentração de Íons de Hidrogênio , Paeonia/metabolismo , Chuva , Estações do Ano , Solo/química , TemperaturaRESUMO
N-methyl-D-aspartate receptors (NMDARs), a subtype of glutamate-gated ion channels, play a central role in epileptogenesis. Recent studies have identified an increasing number of GRIN2A (a gene encoding the NMDAR GluN2A subunit) mutations in patients with epilepsy. Phenotypes of GRIN2A mutations include epilepsy-aphasia disorders and other epileptic encephalopathies, which pose challenges in clinical treatment. Here we identified a heterozygous GRIN2A mutation (c.1341T>A, p.N447K) from a boy with Rolandic epilepsy by whole-exome sequencing. The patient became seizure-free with a combination of valproate and lamotrigine. Functional investigation was carried out using recombinant NMDARs containing a GluN2A-N447K mutant that is located in the ligand-binding domain of the GluN2A subunit. Whole-cell current recordings in HEK 293T cells revealed that the N447K mutation increased the NMDAR current density by ~1.2-fold, enhanced the glutamate potency by 2-fold, and reduced the sensitivity to Mg2+ inhibition. These results indicated that N447K is a gain-of-function mutation. Interestingly, alternative substitutions by alanine and glutamic acid at the same residue (N447A and N447E) did not change NMDAR function, suggesting a residual dependence of this mutation in altering NMDAR function. Taken together, this study identified human GluN2A N447K as a novel mutation associated with epilepsy and validated its functional consequences in vitro. Identification of this mutation is also helpful for advancing our understanding of the role of NMDARs in epilepsy and provides new insights for precision therapeutics in epilepsy.
Assuntos
Epilepsia Rolândica/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Humanos , Masculino , MutaçãoRESUMO
Epilepsy is one of the most common neurological diseases. Of all cases, 70%-80% are considered to be due to genetic factors. In recent years, a large number of genes have been identified as being involved in epilepsy. Among them, N-methyl-D-aspartate receptor (NMDAR) subunit-encoding genes represent a large proportion, suggesting an important role for NMDARs in epilepsy. In this review, we summarize and analyze the genotypes, functional alterations, and clinical aspects of NMDAR subunit mutations/variants identified from patients with epilepsy. These data will help to throw light upon the pathogenicity of these NMDAR mutations and advance our understanding of the subtle and complicated role of NMDARs in epilepsy. It will also offer new insights into precision therapy for this disorder.
Assuntos
Epilepsia/genética , Predisposição Genética para Doença/genética , Mutação/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , HumanosRESUMO
Paeonia ostii, a member of tree peony, is an emerging oil crop with important medical and oil uses and widely cultivated in China. Dissolving the genetic diversity and domestication history of this species is important for further genetic improvements and deployments. We firstly selected 29 simple sequence repeats (SSRs) via transcriptome mining, segregation analyses and polymorphism characterizations; then, 901 individuals from the range-wide samples were genotyped using well-characterized SSR markers. We observed moderate genetic diversity among individuals, and Shaanxi Province was identified as the center of genetic diversity for our cultivated plants. Five well-separated gene pools were detected by STRUCTURE analyses, and the results suggested that multiple independent domestication origins occurred in Shaanxi Province and Tongling City (Anhui Province). Taken together, the genetic evidence and the historical records suggest multiple long-distance introductions after the plant was domesticated in Shandong, Henan and Hunan provinces. The present study provides the first genetic evaluation of the domestication history of P. ostii, and our results provide an important reference for further genetic improvements and deployments of this important crop.
Assuntos
Domesticação , Variação Genética , Genótipo , Paeonia/crescimento & desenvolvimento , Paeonia/genética , China , Paeonia/classificaçãoRESUMO
OBJECTIVES: To explore the relationship between normalization of tumor microvessels and CA9 for rh-Endostatin to inhibit Lewis lung cancer (LLC) and the expression level of CA9 in LLC. METHODS: Lewis cells of logarithmic growth phase were collected and made into 1×106 mL-1 cell suspensions were prepared. The transplanted tumor model of LLC was established on C57/BL6 mice by injected 0.2 mL cell suspensions/mice into 40 C57/BL6 mice. 40 LLC mice were randomly divided into control group and rh-ES group (20 mice per group). Control group experienced treatment of intraperitoneal injection (ip) for 0.2 mL NS/d, while rh-ES group was treated for 5 mg rh-ES/(kg·d) from the first to the ninth day. The samples of 5 mice were obtained from day 2, day 4, day 6 and day 9 after treatment in control group or rh-ES group, respectively. CA9 was tested by IHC in LLC and paracancerous tissues and estimated by RT-PCR and ELISA in the each time point of both rh-ES group and control group,respectively. RESULTS: The transplanted tumor model of LLC on C57/BL6 mice was established successfully. The expression of CA9 decreased on day 4 and day 6 in rh-ES group estimated by RT-PCR and ELISA, which indicated some great significance when compared with day 2, day 9 in rh-ES group and day 4, day 6 in control group (P<0.05), and the expression of CA9 in day 2, day 4, day 6, day 9 tested by IHC was higher in LLC than in paracancerous tissues in control group (P<0.05). CONCLUSIONS: The expression of CA9 was higher in LLC. Rh-ES could have positive effect on LLC model of C57/BL6 mice, in day 4-6 (a brief normalized time course) decreased the expression of CA9 and reversed the tumor hypoxia.
Assuntos
Anidrase Carbônica IX/metabolismo , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Endostatinas/farmacologia , Microvasos , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Distribuição Aleatória , Proteínas Recombinantes/farmacologiaRESUMO
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca(2+)-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation.
Assuntos
Retículo Endoplasmático/metabolismo , Medo/fisiologia , Proteínas de Choque Térmico/metabolismo , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , RatosRESUMO
Exploring low-cost and high-performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal-air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3 C nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers, which is synthesized by a cost-effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of -0.02â V and half-wave potential of -0.140â V) closely comparable to the state-of-the-art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs.
RESUMO
OBJECTIVE: To study the risk environmental and psycho-social factors associated to prostate cancer (PCa) in Chinese population. METHODS: 250 PCa patients and 500 controls were enrolled in this case-control study. Information was collected and logistic regression analysis was used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) for relationship between lifestyle, eating habits and psycho-social factors with PCa risk. RESULTS: Green vegetables and green tea were associated with a decreased risk of PCa (OR=0.39, 95% CI: 0.28-0.53; OR=0.59, 95% CI: 0.40-0.87, respectively). Family history of PCa (OR=7.16, 95% CI: 2.01-25.49), history of prostate diseases (OR=2.28, 95% CI: 1.53-3.41), alcohol consumption (OR=1.97, 95% CI: 1.33-2.90), red meat consumption (OR=1.74, 95% CI: 1.20-2.52), barbecued (OR=2.29, 95% CI: 1.11-4.73) or fried (OR=2.35, 95% CI: 1.24-4.43) foods were related with increased PCa risk. Negative psycho-social factors including occupational setbacks (OR=1.61, 95% CI: 1.00-2.59), marital separation (OR=1.94, 95% CI: 1.29-2.91), self-contained suffering (OR=2.37, 95% CI: 1.58-3.55), and high sensitivity to the personal comments (OR=1.73, 95% CI: 1.18-2.54) were related to PCa. CONCLUSION: Regular consumption of green vegetables and green tea may suggest protective effects on PCa. Alcohol consumption, red meat consumption and barbecued or fried foods were associated with PCa. Negative psycho-social factors may also play a role in the incidence of PCa in Chinese population.