Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Plants (Basel) ; 13(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065532

RESUMO

Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, and the leaf functional traits, biomass and biomass partitioning patterns of A. canescens were investigated. The results showed that drought stress had significant effects on A. canescens leaf functional traits. A. canescens maintained the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), but the peroxidase (POD) and catalase (CAT) activity decreased, and the content of proline (Pro) and soluble sugar (SS) increased only under heavy drought stress. Under drought stress, the leaves became smaller but denser, the specific leaf area (SLA) decreased, but the dry matter content (LDMC) maintained stability. Total biomass decreased 60% to 1758 g under heavy drought stress and the seed and leaf biomass was only 10% and 20% of non-stress group, but there had no significant difference on root biomass. More biomass was allocated to root under drought stress. The root biomass allocation ratio was doubled from 9.62% to 19.81% under heavy drought, and the root/shoot ratio (R/S) increased from 0.11 to 0.25. The MDA was significantly and negatively correlated with biomass, while the SPAD was significantly and positively correlated with total and aboveground organs biomass. The POD, CAT, Pro and SS had significant correlations with root and seed allocation ratio. The leaf morphological traits related to leaf shape and weight had significant correlations with total and aboveground biomass and biomass allocation. Our study demonstrated that under drought stress, A. canescens made tradeoffs between growth potential and drought tolerance and evolved with a conservative strategy. These findings provide more information for an in-depth understanding of the adaption strategies of A. canescens to drought stress and provide potential guidance for planting and sustainable management of A. canescens in arid and semi-arid regions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38862431

RESUMO

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Assuntos
Neoplasias , Precursores de RNA , RNA de Transferência , Ribonuclease P , Ribonuclease P/metabolismo , Ribonuclease P/genética , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimologia , Precursores de RNA/metabolismo , Precursores de RNA/genética , Instabilidade Genômica , Animais , Dano ao DNA , Processamento Pós-Transcricional do RNA , Montagem e Desmontagem da Cromatina/genética
3.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843184

RESUMO

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Humanos , Animais , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Transcrição Gênica , Fosforilação , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Camundongos Knockout , Dano ao DNA , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Cromatina/metabolismo , Ubiquitinação , Reparo por Excisão
4.
Adv Sci (Weinh) ; 11(28): e2403485, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803048

RESUMO

DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Ubiquitina Tiolesterase , Animais , Camundongos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Modelos Animais de Doenças , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Autophagy ; : 1-14, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38762759

RESUMO

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.

6.
J Biol Chem ; 300(6): 107312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657865

RESUMO

Homologous-recombination deficiency due to breast cancer 1/2 (BRCA1/2) mutations or mimicking BRCA1/2 mutations confer synthetic lethality with poly-(ADP)-ribose polymerase 1/2 inhibitors. The chromatin regulator Pax2 transactivation domain interacting protein (PTIP) promotes stalled replication fork degradation in BRCA1-deficient cells, but the underlying mechanism by which PTIP regulates stalled replication fork stability is unclear. Here, we performed a series of in vitro analyses to dissect the function of UFMylation in regulating fork stabilization in BRCA1-deficient cells. By denaturing co-immunoprecipitation, we first found that replication stress can induce PTIP UFMylation. Interestingly, this post-translational modification promotes end resection and degradation of nascent DNA at stalled replication forks in BRCA1-deficient cells. By cell viability assay, we found that PTIP-depleted and UFL1-depleted BRCA1 knockdown cells are less sensitive to poly-(ADP)-ribose polymerase inhibitors than the siRNA targeting negative control BRCA1-deficient cells. These results identify a new mechanism by which PTIP UFMylation confers chemoresistance in BRCA1-deficient cells.


Assuntos
Proteína BRCA1 , Replicação do DNA , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ubiquitinação , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a DNA
7.
Oncogene ; 43(23): 1769-1778, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632437

RESUMO

Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Neoplasias da Mama , Proteínas de Transporte , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Efeito Warburg em Oncologia , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Fosforilação , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Camundongos , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Acetilglucosamina/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657044

RESUMO

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Assuntos
Quinase 1 do Ponto de Checagem , Replicação do DNA , Poli(ADP-Ribose) Polimerase-1 , Animais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Camundongos , Humanos , Dano ao DNA , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627785

RESUMO

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Assuntos
Neoplasias Mamárias Animais , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Dano ao DNA , Reparo do DNA , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
10.
Cell Rep ; 43(2): 113779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358891

RESUMO

R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.


Assuntos
Adenina/análogos & derivados , Estruturas R-Loop , RNA , Ribonuclease H , Humanos , Instabilidade Genômica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Metiltransferases/genética
11.
Cells ; 12(21)2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947621

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Animais , Humanos , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Mamíferos/metabolismo
12.
Nucleic Acids Res ; 51(22): 12207-12223, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37897354

RESUMO

Following a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks. However, the reason why nuclease actions are regulated by different mechanisms in two DNA metabolism is poorly understood. We show that human HELQ acts as a DNA end resection regulator, with opposing activities on DNA end resection at DSBs and on stalled forks as seen for other regulators. Mechanistically, HELQ helicase activity is required for EXO1-mediated DSB end resection, while ssDNA-binding capacity of HELQ is required for its recruitment to stalled forks, facilitating fork protection and preventing chromosome aberrations caused by replication stress. Here, HELQ synergizes with CtIP but not BRCA1 or BRCA2 to protect stalled forks. These findings reveal an unanticipated role of HELQ in regulating DNA end resection at DSB and stalled forks, which is important for maintaining genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , DNA Helicases/genética , Reparo do DNA , Recombinação Homóloga/genética
13.
J Biol Chem ; 299(11): 105354, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858678

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) glycosylation, a prevalent protein post-translational modification (PTM) that occurs intracellularly, has been shown to crosstalk with phosphorylation and ubiquitination. However, it is unclear whether it interplays with other PTMs. Here we studied its relationship with ADP-ribosylation, which involves decorating target proteins with the ADP-ribose moiety. We discovered that the poly(ADP-ribosyl)ation "eraser", ADP-ribose glycohydrolase (PARG), is O-GlcNAcylated at Ser26, which is in close proximity to its nuclear localization signal. O-GlcNAcylation of PARG promotes nuclear localization and chromatin association. Upon DNA damage, O-GlcNAcylation augments the recruitment of PARG to DNA damage sites and interacting with proliferating cell nuclear antigen (PCNA). In hepatocellular carcinoma (HCC) cells, PARG O-GlcNAcylation enhances the poly(ADP-ribosyl)ation of DNA damage-binding protein 1 (DDB1) and attenuates its auto-ubiquitination, thereby stabilizing DDB1 and allowing it to degrade its downstream targets, such as c-Myc. We further demonstrated that PARG-S26A, the O-GlcNAc-deficient mutant, promoted HCC in mouse xenograft models. Our findings thus reveal that PARG O-GlcNAcylation inhibits HCC, and we propose that O-GlcNAc glycosylation may crosstalk with many other PTMs.


Assuntos
Carcinoma Hepatocelular , Glicosídeo Hidrolases , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Acetilglucosamina , ADP-Ribosilação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Glicosilação , Processamento de Proteína Pós-Traducional
14.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194992, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797785

RESUMO

The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.


Assuntos
Processamento de Proteína Pós-Traducional , Fatores de Transcrição
15.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728310

RESUMO

DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Replicação do DNA/genética , Ubiquitinação , Dano ao DNA , Instabilidade Genômica , Recombinação Homóloga , Neoplasias/genética , Neoplasias/terapia
16.
Nat Struct Mol Biol ; 30(11): 1719-1734, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735618

RESUMO

Chromatin relaxation is a prerequisite for the DNA repair machinery to access double-strand breaks (DSBs). Local histones around the DSBs then undergo prompt changes in acetylation status, but how the large demands of acetyl-CoA are met is unclear. Here, we report that pyruvate dehydrogenase 1α (PDHE1α) catalyzes pyruvate metabolism to rapidly provide acetyl-CoA in response to DNA damage. We show that PDHE1α is quickly recruited to chromatin in a polyADP-ribosylation-dependent manner, which drives acetyl-CoA generation to support local chromatin acetylation around DSBs. This process increases the formation of relaxed chromatin to facilitate repair-factor loading, genome stability and cancer cell resistance to DNA-damaging treatments in vitro and in vivo. Indeed, we demonstrate that blocking polyADP-ribosylation-based PDHE1α chromatin recruitment attenuates chromatin relaxation and DSB repair efficiency, resulting in genome instability and restored radiosensitivity. These findings support a mechanism in which chromatin-associated PDHE1α locally generates acetyl-CoA to remodel the chromatin environment adjacent to DSBs and promote their repair.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Acetilcoenzima A/metabolismo , Acetilação , Reparo do DNA , Dano ao DNA , Piruvatos
17.
Front Neurosci ; 17: 1242448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599996

RESUMO

Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.

18.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1864-1873, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37559455

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Reparo do DNA , Recombinação Homóloga , Proteína de Replicação A/genética , DNA/genética , Reparo do DNA por Junção de Extremidades
19.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503842

RESUMO

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Assuntos
Reparo do DNA , Humanos , Linhagem Celular Tumoral , Dano ao DNA , Desacetilase 6 de Histona/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Nucleic Acids Res ; 51(10): 4760-4773, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36912084

RESUMO

Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.


Assuntos
Acetiltransferases , Cromátides , Proteínas Cromossômicas não Histona , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Humanos , Linhagem Celular , Leveduras , Proteínas Cromossômicas não Histona/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA