Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 335: 122067, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616090

RESUMO

Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.

2.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280285

RESUMO

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

4.
Nat Commun ; 14(1): 7708, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001072

RESUMO

Seawater electrolysis is a viable method for producing hydrogen on a large scale and low-cost. However, the catalyst activity during the seawater splitting process will dramatically degrade as salt concentrations increasing. Herein, CoP is discovered that could reject chloride ions far from catalyst in electrolyte based on molecular dynamic simulation. Thus, a binder-free electrode is designed and constructed by in-situ growth of homogeneous CoP on rGO nanosheets wrapped around the surface of Ti fiber felt for seawater splitting. As expected, the as-obtained CoP/rGO@Ti electrode exhibits good catalytic activity and stability in alkaline electrolyte. Especially, benefitting from the highly effective repulsive Cl- intrinsic characteristic of CoP, the catalyst maintains good catalytic performance with saturated salt concentration, and the overpotential increasing is less than 28 mV at 10 mA cm-2 from 0 M to saturated NaCl in electrolyte. Furthermore, the catalyst for seawater splitting performs superior corrosion-resistance with a low solubility of 0.04%. This work sheds fresh light into the development of efficient HER catalysts for salinity tolerance hydrogen evolution.

5.
J Chromatogr A ; 1708: 464320, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37669614

RESUMO

As production processes have evolved, airborne concentrations of benzene, toluene and xylene in many workplaces are already well below the occupational exposure limits. However, studies have shown that low levels of exposure to benzene, toluene and xylene can still cause health effects in people exposed occupationally. However, there is no literature on health risk assessment of internal exposure. In view of this, an analytical method based on quaternary amine-functionalized core-shell-shell magnetic polymers (QA-CSS-MPs) was developed for the determination of seven metabolites in urine by MSPE-UPLC-DAD-HRMS. Furthermore, an improved QuEChERS method for the extraction of seven metabolites from human urine samples was introduced for the first time and satisfactory extraction rates were achieved. In addition, QA-CSS-MPs microspheres with core-shell-shell structure were designed and synthesized, and the morphology, composition and magnetic properties of the materials were fully characterized to verify the rationality of the synthetic route. Subsequently, QA-CSS-MPs microspheres were used as magnetic solid-phase extraction (MSPE) adsorbents for the purification of urine extracts, and UPLC-DAD-HRMS was used for the detection of seven metabolites. As a result, this method allows the accurate determination of seven metabolites in urine samples over an ultra-wide concentration range (0.001-100 mg/L). Under optimal experimental conditions, i.e., 2% hydrochloric acid in urine for the hydrolysis and 20 mg of QA-CSS-MPs for 5 min purification, the spiked recoveries of the seven target metabolites ranged from 81.5% to 117.7% with RSDs of 1.0%-9.4%. The limits of detection (LODs, S/N≥3) for the established method were in the range of 0.2-0.3 µg/L. The developed method was applied to 254 human urine samples for the determination of seven metabolites. The results showed that the concentration distributions of three xylene metabolites in urine, 2-MHA, 3-MHA, 4-MHA and total MHA, showed statistically significant differences for occupational exposure (p<0.001). In addition, the results of the internal exposure assessment showed that there is a high potential health risk associated with occupational exposure processes.


Assuntos
Benzeno , Tolueno , Humanos , Xilenos , Aminas , Polímeros , Fenômenos Magnéticos
6.
Nature ; 619(7968): 102-111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258676

RESUMO

The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.


Assuntos
Mudança Climática , Planeta Terra , Justiça Ambiental , Internacionalidade , Segurança , Humanos , Aerossóis/metabolismo , Clima , Água/metabolismo , Nutrientes/metabolismo , Segurança/legislação & jurisprudência , Segurança/normas
7.
Carbohydr Polym ; 296: 119891, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087966

RESUMO

Stretchable electroluminescent (EL) devices show great potential for wearable displays. However, the integration of stretchability, flexibility, temperature-tolerance, waterproofness and biocompatibility into a single EL device remains a challenge. Herein, we report a facile full solution-process method for a novel EL device consisting of a dielectric luminescent layer sandwiched between two silver nanowires-cellulose nanocrystals with II crystalline allomorphs/polydopamine-polydimethylsiloxane (CNC II-AgNWs/PDA-PDMS) electrodes. CNC II is used as a green dispersant, film-forming agent and antioxidant to improve the optical, electrical, mechanical and antioxidant properties of the electrodes. The electrodes exhibit a smooth surface, low sheet resistance (~11 Ω sq-1), high transparency (~79.2 %), ideal stretchability (~100 % strain) and excellent inoxidizability. The assembled EL devices with outstanding tensile stability and fatigue resistance demonstrate excellent luminance, flexibility and stretchability underwater and at extreme temperatures, as well as intrinsic biocompatibility. Our multifunctional EL devices with outstanding integrated properties provide new insights for the next-generation flexible electronics.


Assuntos
Nanofios , Antioxidantes , Eletrodos , Eletrônica , Nanofios/química , Prata
8.
ACS Appl Mater Interfaces ; 14(30): 35040-35052, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861436

RESUMO

Nanocellulose-mediated MXene composites have attracted widespread attention in the fields of sustainable energy, wearable sensors, and electromagnetic interference (EMI) shielding. However, the effects of different nanocelluloses on the multifunctional properties of nanocellulose/Ti3C2Tx composites still need further exploration. Herein, we use three types of nanocelluloses, including bacterial cellulose (BC), cellulose nanocrystals (CNCs), and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)-oxidized cellulose nanofibers (TOCNs), as intercalation to link Ti3C2Tx nanosheets via a self-assembly process, improving the dispersibility, film-forming ability, mechanical properties, and multifunctional performances of nanocelluloses/Ti3C2Tx hybrids through electrostatic forces and hydrogen bonding. The optimized ultrathin (∼40 µm) TOCN/Ti3C2Tx film integrates excellent tensile strength (∼98.89 MPa), long-term stability (during deformation and water erosion), favorable photoelectric response (photosensitivity up to 2620%), and temperature response (reaching 163 °C in only 12 s). Laser-cutting patterned TOCN/Ti3C2Tx films are assembled into flexible multifunctional electronics, exhibiting splendid photoresponse performances and tunable electromagnetic energy shielding capability (>96.4%) related to the variation of water content at the film-gel electrolyte interface. Multifunctional patterned devices based on TOCN/Ti3C2Tx composite films provide a novel pathway to rationally design wearable EMI devices with photoelectric response and photothermal conversion.

9.
Materials (Basel) ; 15(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057153

RESUMO

This study explored the feasibility of fabricating fire-retardant strandboard with low mechanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investigate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate (PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE), APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the two flame retardants lead to evidently differential influences on the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with both good fire retardant and satisfying physico-mechanical properties.

10.
J Colloid Interface Sci ; 612: 679-688, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032925

RESUMO

Si, featuring ultra-large theoretical specific capacity, is a very promising alternative to graphite for Li-ion batteries (LIBs). However, Si suffers from intrinsic low electrical conductivity and structural instability upon lithiation, thereby severely deteriorating its electrochemical performance. To address these issues, B-doping into Si, N-doped carbon coating layer, and carbon nanotube conductive network are combined in this work. The obtained Si/C hybrid anode material can be "grown" onto the Cu foil without using any binder and delivers large specific capacity (2328 mAh g-1 at 0.2 A g-1), great rate capability (1296.8 mAh g-1 at 4 A g-1), and good cyclability (76.7% capacity retention over 500 cycles). Besides, a cellulose separator derived from cotton is found to be superior to traditional polypropylene separator. By using cellulose as both the separator host and the mechanical skeleton of two electrodes, a flexible all-in-one paper-like LIB is assembled via a facile layer-by-layer filtration method. In this all-in-one LIB, all the components are integrated together with robust interfaces. This LIB is able to offer commercial-level areal capacity of 3.47 mAh cm-2 (corresponding to 12.73 mWh cm-2 and 318.3 mWh cm-3) and good cycling stability even under bending. This study offers a new route for optimizing Si-based anode materials and constructing flexible energy storage devices with a large areal capacity.

11.
ACS Nano ; 16(2): 2461-2470, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080179

RESUMO

MXenes have been intensively studied for electrochemical energy storage and other applications. However, time-consuming multistep procedures involving hypertoxic HF or alike are utilized in conventional synthesis methods of MXenes. Besides, -F terminal functional groups inevitably exist in these MXenes, detrimental to supercapacitor and battery performances. Herein, we develop a facile and time-saving electrochemical etching method to synthesize F-free and Cl-containing Ti3C2Tx in a mixed LiOH and LiCl aqueous solution with an etching efficiency of 92.2%. During the synthesis, sonification alone is able to delaminate Ti3C2Tx without using any hazardous organic intercalant. The obtained delaminated Ti3C2Tx flakes are ∼3.8 µm in lateral size and ∼3.9 nm in thickness, and can be stable in an aqueous dispersion for at least 15 days. The filtrated Ti3C2Tx film is 20.5 MPa in tensile strength, 13.4 GPa in Young's modulus, and 1663 S cm-1 in electrical conductivity, and exhibits specific capacitances of 323.7 F g-1, 1.39 F cm-2, and 1160 F cm-3 for supercapacitors. Also, a flexible zinc-ion hybrid capacitor with energy density values of 20.8 mWh cm-3 and 249.9 µWh cm-2 is assembled by using the Ti3C2Tx film as the cathode, and can maintain almost all its capacity under bending.

12.
ACS Appl Mater Interfaces ; 13(49): 59142-59153, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851617

RESUMO

With the rapid development of soft electronics, flexible and stretchable strain sensors are highly desirable. However, coupling of high sensitivity and stretchability in a single strain sensor remains a challenge. Herein, a kind of conductive elastomer is constructed with poly(dimethylsiloxane) (PDMS) and silylated cellulose nanocrystal (SCNC)/carbon nanotube (CNT) nanohybrids through a facile one-pot solution-casting method. The hydrophobic SCNCs can effectively facilitate the dispersion of CNTs in PDMS and synergistically improve the interfacial compatibility between CNTs and the PDMS matrix, resulting in favorable stress and electron transfer in the polymer network. Due to the outstanding electrical conductivity of CNTs and the excellent dispersity and high mechanical performance of SCNCs, combined with the good compatibility between SCNC-mediated carbon nanotubes (SCNC-CNTs) and PDMS, the resulting composite elastomer (SCNC-CNT/PDMS) shows high electrical conductivity (∼2.77 S m-1), tensile strength (∼5.72 MPa), and fatigue resistance properties. The strain sensor assembled by SCNC-CNT/PDMS demonstrates a high strain range above 100%, appealing strain sensitivity with a gauge factor of 37.11 at 50-100% strain, and long-term stability and durability, which is capable of monitoring both real-time human motions and acoustic vibrations. This work paves a new way for the design and controllable preparation of flexible and stretchable conductive elastomers, demonstrating promising applications in wearable devices and intelligent electronics.

13.
ACS Appl Mater Interfaces ; 13(42): 50281-50297, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637615

RESUMO

Flexible sensors have attracted great research interest due to their applications in artificial intelligence, wearable electronics, and personal health management. However, due to the inherent brittleness of common hydrogels, preparing a hydrogel-based sensor integrated with excellent flexibility, self-recovery, and antifatigue properties still remains a challenge to date. In this study, a type of physically and chemically dual-cross-linked conductive hydrogels based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN)-carrying carbon nanotubes (CNTs) and polyacrylamide (PAAM) matrix via a facial one-pot free-radical polymerization is developed for multifunctional wearable sensing application. Inside the hierarchical gel network, TOCNs not only serve as the nanoreinforcement with a toughening effect but also efficiently assist the homogeneous distribution of CNTs in the hydrogel matrix. The optimized TOCN-CNT/PAAM hydrogel integrates high compressive (∼2.55 MPa at 60% strain) and tensile (∼0.15 MPa) strength, excellent intrinsic self-recovery property (recovery efficiency >92%), and antifatigue capacity under both cyclic stretching and pressing. The multifunctional sensors assembled by the hydrogel exhibit both high strain sensitivity (gauge factor ≈11.8 at 100-200% strain) and good pressure sensing ability over a large pressure range (0-140 kPa), which can effectively detect the subtle and large-scale human motions through repeatable and stable electrical signals even after 100 loading-unloading cycles. The comprehensive performance of the TOCN-CNT/PAAM hydrogel-based sensor is superior to those of most gel-based sensors previously reported, indicating its potential applications in multifunctional sensing devices for healthcare systems and human motion monitoring.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Hidrogéis/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Resinas Acrílicas/química , Materiais Biocompatíveis/síntese química , Condutividade Elétrica , Humanos , Teste de Materiais
14.
J Colloid Interface Sci ; 601: 486-494, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34090026

RESUMO

Thanks to high safety and low cost, rechargeable zinc-ion batteries (RZIBs) have become a promising candidate for grid-scale energy storage systems. However, zinc anodes suffer from severe dendrite growth and irreversible side reactions, leading to poor cyclability of RZIBs. In this work, low-cost sodium lignosulfonate (SL) is utilized as the electrolyte additive to solve this problem. The added amount of SL is optimized to be 0.02%, which enables the Zn//α-MnO2 battery to deliver a large capacity of 146 mAh g-1 after 1000 cycles at 1 A g-1, corresponding to a high capacity retention of 83.5%. The Zn//Zn symmetric cell with the modified electrolyte also shows excellent cyclability even under a commercial level of areal specific capacity (4 mAh cm-2). Overall, the results of this study confirm that the SL additive can improve the ionic conductivity of electrolyte, restrict the two-dimensional planar diffusion of Zn2+ ions at the electrode/electrolyte interface, lower the nucleation overpotential of Zn2+ ions, prevent side reactions, and inhibit the corrosion of Zn metal. Therefore, the dendrite growth and byproduct formation can be effectively suppressed. This study provides new insights into protecting metal electrodes of electrochemical energy storage devices.

15.
J Colloid Interface Sci ; 597: 171-181, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866209

RESUMO

HYPOTHESIS: Hydrogel-based sensors have attracted considerable attention due to potential opportunities in human health monitoring when both mechanical flexibility and sensing ability are required. Therefore, the integration of excellent mechanical properties, electrical conductivity and self-healing properties into hydrogels may improve the application range and durability of hydrogel-based sensors. EXPERIMENTS: A novel composite hydrogel composed of polyaniline (PANI), polyacrylic acid (PAA) and 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNFs) was designed. The viscoelastic, mechanical, conductive, self-healing and sensing properties of hydrogels were studied. FINDINGS: The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98 kPa and electrical conductivity of 3.95 S m-1, as well as good mechanical and electrical self-healing properties within 6 h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF = 8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.

16.
ACS Appl Mater Interfaces ; 13(13): 15216-15225, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760583

RESUMO

Silicon is one of the most promising anode materials for lithium-ion batteries, whereas its low electronic conductivity and huge volumetric expansion upon lithiation strongly influence its prospective applications. Herein, we develop a facile method to introduce a graded protective sheath onto the surface of Si nanoparticles by utilizing lignin as the carbon source and Ni(NO3)2 as the auxiliary agent. Interestingly, the protective sheath is composed of NiSi2, SiC, and C from the interior to the exterior, thereby guaranteeing excellent compatibility between the neighboring components. Thanks to this unique coating layer, the obtained nanocomposite delivers a large reversible specific capacity (1586.3 mAh g-1 at 0.2 A g-1), excellent rate capability (879.4 mAh g-1 at 5 A g-1), and superior cyclability (88.2% capacity retention after 500 cycles at 1 A g-1). Such great performances are found to derive from a slight volumetric expansion, high Li+ ion diffusion coefficients, good interface stability, and fast electrochemical kinetics. These properties are obviously superior to those of their counterparts, benefiting from the interface engineering. This study offers new insights into constructing high-capacity and long-durable electrode materials for energy storage.

17.
J Colloid Interface Sci ; 594: 389-397, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774395

RESUMO

With the booming development of wearable electronics, flexible zinc-based batteries are attracting significant attention due to their high safety, low cost, environmental benignity, and relatively large energy/power densities. However, in a conventional segregated configuration, the electrodes could be easily detached from the separator when the battery is subjected to bending strain, which would dramatically depress electrochemical performances. Moreover, severe zinc dendrite growth and parasitic side reactions at the anode are extremely detrimental to the durability and the reliability of zinc-based batteries. Herein, a flexible self-standing composite film anode consisting of zinc microspheres, carbon nanotubes, and nanocellulose is constructed to replace the conventional Zn foil. It is found that the use of this anode can effectively inhibit the dendrites and side reactions, thereby substantially improving the cyclability. In addition, a layer-by-layer vacuum filtration method is used to integrate the composite film anode with a cellulose separator and a MnO2-based composite film cathode into a single matrix. The unique integrated battery realizes great rate capability and cycling stability, and more importantly, superior affordability to bending deformations. Besides, the commonly used thick, heavy, and expensive current collectors are no longer required in the integrated configuration, therefore enabling the battery to be smarter and cheaper. This study not only opens a new option for building dendrite-free zinc anodes but also discloses a facile strategy to achieve integrated configuration for energy storage devices.

18.
Carbohydr Polym ; 250: 116905, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049881

RESUMO

Stretchable, self-healing and conductive hydrogels have attracted much attention for wearable strain sensors, which are highly required in health monitoring, human-machine interaction and robotics. However, the integration of high stretchability, self-healing capacity and enhanced mechanical performance into one single conductive hydrogel is still challenging. In this work, a type of stretchable, self-healing and conductive composite hydrogels are fabricated by uniformly dispersing TEMPO-oxidized cellulose nanofibers (TOCNFs)-graphene (GN) nanocomposites into polyacrylic acid (PAA) hydrogel through an in-situ free radical polymerization. The resulting hydrogels demonstrate a stretchability (∼850 %), viscoelasticity (storage modulus of 32 kPa), mechanical strength (compression strength of 2.54 MPa, tensile strength of 0.32 MPa), electrical conductivity (∼ 2.5 S m-1) and healing efficiency of 96.7 % within 12 h. The hydrogel-based strain sensor shows a high sensitivity with a gauge factor of 5.8, showing great potential in the field of self-healing wearable electronics.


Assuntos
Condutividade Elétrica , Grafite/química , Hidrogéis/química , Monitorização Fisiológica/instrumentação , Movimento , Nanocompostos/química , Dispositivos Eletrônicos Vestíveis , Materiais Biocompatíveis/química , Humanos , Monitorização Fisiológica/métodos
19.
Front Plant Sci ; 11: 1248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922423

RESUMO

There are considerable variations in the percentage loss of hydraulic conductivity (PLC) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (K l) via precise control over PLC under variable ΔΨ (water potential differential between soil and leaf) conditions to maintain the -m/b constant (-m: the sensitivity of stomatal conductance to VPD; b: reference stomatal conductance at 1.0 kPa VPD), where VPD is vapor pressure deficit. We used Populus euphratica, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of VPD, stomatal conductance (g s), g s responses to VPD, mid-day minimum leaf water potential (Ψ lmin), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the -m/b ratio was almost constant (=0.6) across all the sites; 2) the average Ψ 50 (the xylem water potential with 50% loss of hydraulic conductivity) was -1.63 MPa, and mid-day PLC ranged from 62 to 83%; 3) there were tight correlations between Ψ 50 and wood density/leaf specific hydraulic conductivity (k l) and between specific hydraulic conductance sensitivity to water potential [d(k s)/dln(-Ψ)] and specific hydraulic conductivity (k s). A modified hydraulic model was applied to investigate the relationship between g s and VPD under variable ΔΨ and K l conditions. It was concluded that P. euphratica was able to control PLC in order to maintain a relatively constant -m/b under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to VPD were well coordinated in order to maintain relatively water homeostasis of P. euphratica in the desert. Model simulations could explain the wide variations of PLC across and within woody species that are often observed in the field.

20.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935929

RESUMO

Recently, with the development of personal wearable electronic devices, the demand for portable power is miniaturization and flexibility. Electro-conductive hydrogels (ECHs) are considered to have great application prospects in portable energy-storage devices. However, the synergistic properties of self-healability, viscoelasticity, and ideal electrochemistry are key problems. Herein, a novel ECH was synthesized by combining polyvinyl alcohol-borax (PVA) hydrogel matrix and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-cellulose nanofibers (TOCNFs), carbon nanotubes (CNTs), and polyaniline (PANI). Among them, CNTs provided excellent electrical conductivity; TOCNFs acted as a dispersant to help CNTs form a stable suspension; PANI enhanced electrochemical performance by forming a "core-shell" structural composite. The freeze-standing composite hydrogel with a hierarchical 3D-network structure possessed the compression stress (~152 kPa) and storage modulus (~18.2 kPa). The composite hydrogel also possessed low density (~1.2 g cm-3), high water-content (~95%), excellent flexibility, self-healing capability, electrical conductivity (15.3 S m-1), and specific capacitance of 226.8 F g-1 at 0.4 A g-1. The fabricated solid-state all-in-one supercapacitor device remained capacitance retention (~90%) after 10 cutting/healing cycles and capacitance retention (~85%) after 1000 bending cycles. The novel ECH had potential applications in advanced personalized wearable electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA