Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(17): 4694-4704, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656198

RESUMO

Batteries with intercalation-conversion-type electrodes tend to achieve high-capacity storage, but the complicated reaction process often suffers from confusing electrochemical mechanisms. Here, we reinterpreted the essential issue about the potential of the conversion reaction and whether there is an intercalation reaction in a lithium/sodium-ion battery (LIB/SIB) with the FeP anode based on the evolution of the magnetic phase. Especially, the ever-present intercalation process in a large voltage range followed by the conversion reaction with extremely low potential was confirmed in FeP LIB, while it is mainly the conversion reaction for the sodium storage mechanism in FeP SIB. The insufficient conversion reaction profoundly limits the actual capacity to the expectedly respectable value. Accordingly, a graphene oxide modification strategy was proposed to increase the reversible capacity of FeP LIB/SIB by 99% and 132%, respectively. The results facilitate the development of anode materials with a high capacity and low operating potential.

2.
Nature ; 626(7997): 105-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297175

RESUMO

Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.

3.
Chem Sci ; 14(43): 12219-12230, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969610

RESUMO

The solid-electrolyte-interphase (SEI) plays a critical role in lithium-ion batteries (LIBs) because of its important influence on electrochemical performance, such as cycle stability, coulombic efficiency, etc. Although LiOH has been recognized as a key component of the SEI, its influence on the SEI and electrochemical performance has not been well clarified due to the difficulty in precisely controlling the LiOH content and characterize the detailed interface reactions. Here, a gradual change of LiOH content is realized by different reduction schemes among Co(OH)2, CoOOH and CoO. With reduced Co nanoparticles as magnetic "probes", SEI characterization is achieved by operando magnetometry. By combining comprehensive characterization and theoretical calculations, it is verified that LiOH leads to a composition transformation from lithium ethylene di-carbonate (LEDC) to lithium ethylene mono-carbonate (LEMC) in the SEI and ultimately results in capacity decay. This work unfolds the detailed SEI reaction scenario involving LiOH, provides new insights into the influence of SEI composition, and has value for the co-development between the electrode materials and electrolyte.

4.
Nat Commun ; 14(1): 3596, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328475

RESUMO

The interfacial morphology of crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) is a key success factor to approach the theoretical efficiency of Si-based solar cells, especially Si heterojunction technology. The unexpected crystalline silicon epitaxial growth and interfacial nanotwins formation remain a challenging issue for silicon heterojunction technology. Here, we design a hybrid interface by tuning pyramid apex-angle to improve c-Si/a-Si:H interfacial morphology in silicon solar cells. The pyramid apex-angle (slightly smaller than 70.53°) consists of hybrid (111)0.9/(011)0.1 c-Si planes, rather than pure (111) planes in conventional texture pyramid. Employing microsecond-long low-temperature (500 K) molecular dynamic simulations, the hybrid (111)/(011) plane prevents from both c-Si epitaxial growth and nanotwin formation. More importantly, given there is not any additional industrial preparation process, the hybrid c-Si plane could improve c-Si/a-Si:H interfacial morphology for a-Si passivated contacts technique, and wide-applied for all silicon-based solar cells as well.


Assuntos
Temperatura Baixa , Silício , Cristalização , Indústrias , Simulação de Dinâmica Molecular
5.
RSC Adv ; 13(12): 7886-7896, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36909745

RESUMO

A two-terminal (2T) perovskite/silicon heterojunction tandem solar cell (PVSK/SHJ) is considered one of the most promising candidates for next-generation photovoltaics with the possibility of achieving a power conversion efficiency (PCE) exceeding 30% at low production cost. However, the current mismatch and voltage loss have seriously decreased the performance of 2T PVSK/SHJ tandem solar cells. Here, we report the composition engineering for perovskite top cells to prepare a high performance 2T tandem cell by tuning CsBr co-evaporating rates and increasing concentrations of FAI/FABr solutions. We show that the variation in composition for the perovskite absorber effectively optimized the band gap and diminished the defects of the top cell. Our investigations reveal that the current mismatch of sub-cells was carefully tuned by introducing CsBr at varied co-evaporating rates and the voltage loss was decreased by increasing concentrations of FAI/FABr solutions. Thus, we achieved a PCE of 23.22% in two-terminal monolithic tandems with an area of 1.2 cm2 by tuning the composition of the perovskite absorber.

6.
Materials (Basel) ; 16(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36836955

RESUMO

TiO2 is a promising anode material for lithium-ion batteries (LIBs) due to its low cost, suitable operating voltage, and excellent structural stability. The inherent poor electron conductivity and low ion diffusion coefficient, however, severely limit its application in lithium storage. Here, Co-doped TiO2 is synthesized by a hydrothermal method as an anode material since Co@TiO2 possesses a large specific surface area and high electronic conductivity. Thanks to the Co dopants, the ion diffusion and electron transport are both greatly improved, which is very beneficial for cycle stability, coulombic efficiency (CE), reversible capacity, and rate performance. As a result, Co@TiO2 shows a high reversible capacity of 227 mAh g-1 at 3 C, excellent rate performance, and cycling stability with a capacity of about 125 mAh g-1 at 10C after 600 cycles (1 C = 170 mA g-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA