Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(9): 4839-4847, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096624

RESUMO

In order to explore the effects of straw returning combined with fertilizer on soil nutrients and winter wheat yield in the Guanzhong area, an experimental split plot design was utilized. The main plot consisted of no straw returning (S0) and straw returning (S). The sub-regions consisted of no fertilizer (WF), nitrogen fertilizer (NF), and nitrogen and phosphate fertilizer (NPF). Ecological stoichiometry was used to study the relationship between soil carbon, nitrogen, phosphorus content, and yield under straw returning combined with nitrogen and phosphorus fertilizer conditions. The results showed that straw and fertilization interactions had significant effects on soil organic carbon, total nitrogen, and total phosphorus contents in the surface layer (0-20 cm) (P<0.05). Compared with that in the S0WF treatment, the SNPF treatment significantly increased soil organic carbon and total nitrogen contents in the surface layer (0-20 cm) (P<0.05). The interaction between straw and year had significant effects on soil total nitrogen content in the surface layer (0-20 cm) (P<0.05). With the increase in straw returning time, the total nitrogen content of soil 0-20 cm under the SWF treatment was significantly higher than that under the S0WF treatment (P<0.05). Straw and fertilization and their interaction had no significant effects on organic carbon and total nitrogen contents in the 20-40 cm soil layer (P>0.05). Straw and straw interaction with fertilization significantly affected total P content in 20-40 cm soil (P<0.05). Compared with that in the SWF treatment, the SNPF treatment significantly increased the total phosphorus content in the 20-40 cm soil layer (P<0.05). Straw returning combined with chemical fertilizer also had a significant effect on soil stoichiometry. Compared with that in the S0WF treatment, the S0NPF treatment decreased soil C:N in the surface layer (0-20 cm) and increased soil C:P and N:P in the surface layer (0-20 cm). Compared with that in the SWF treatment, the SNF treatment reduced soil C:N in the surface layer (0-20 cm). Straw returning combined with chemical fertilizer also had a significant effect on winter wheat yield. In 2020 and 2021, the SNPF treatment increased production by 24.23% and 28.9%, respectively, compared with that of the S0WF treatment. Correlation analysis showed that yield was significantly positively correlated with C:N (P<0.05) and C:P (P<0.01). At the same time, total nitrogen and N:P were positively correlated with treatment years (P<0.001). In conclusion, straw returning and that combined with nitrogen and phosphate fertilizer (SNPF) can improve soil nutrient characteristics, change soil stoichiometric characteristics, and increase yield in the Guanzhong area. Therefore, the results of this study indicate that straw returning combined with nitrogen and phosphate fertilizer (SNPF) is an effective way to optimize regional farmland nutrient management and improve grain production capacity.


Assuntos
Fertilizantes , Solo , Agricultura/métodos , Carbono/análise , Fertilizantes/análise , Nitrogênio/análise , Nutrientes/análise , Fosfatos/análise , Fósforo , Solo/química , Triticum
2.
Artigo em Inglês | MEDLINE | ID: mdl-35954899

RESUMO

The Yellow River Basin in Shaanxi (YRBS) has a relatively fragile ecological environment, with severe soil erosion and a high incidence of natural and geological disasters. In this study, a river basin landscape ecological risk assessment model was constructed using landscape ecology principles to investigate the temporal and spatial evolution, as well as the spatial autocorrelation characteristics of landscape ecological risks in the YRBS over a 20-year period. The main findings from the YRBS were that the land use types changed significantly over the span of 20 years, there was spatial heterogeneity of the landscape pattern, and the ecological risk value was positively correlated. The threat of landscape ecological risks in YRBS is easing, but the pressure on the ecological environment is considerable. This study provides theoretical support administrative policies for future ecological risk assessment and protection, restoration measures, and control in the Yellow River Basin of Shaanxi Province.


Assuntos
Ecologia , Rios , China , Conservação dos Recursos Naturais , Ecossistema , Medição de Risco , Análise Espacial
3.
Fungal Biol ; 126(6-7): 449-460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667832

RESUMO

Lead (Pb) is widely distributed in nature and has important industrial applications, while being highly toxic. In this study, the Pb(II) biosorption and immobilization behavior of Penicillium polonicum was investigated through surface morphology observation and multiple experimental analysis. In addition, the molecular mechanism of Pb(II) immobilization was further explored through proteomics. The analysis of the removal ability of P. polonicum to Pb(II) has found that P. polonicum could remove Pb(II) up to 95% (initial 4 mM Pb(II)) in 12 d. Scanning Electron Microscope (SEM) revealed a large amount of Pb(II) adsorbed on the cell wall. Raman and Energy Disperse Spectroscopy (EDS) revealed the formation of large amounts of PbC2O4 minerals extracellularly. Field Emission High-resolution Transmission Electron Microscopy (FE-TEM) found that [Pb5(PO4)3Cl] formed on the cell surface and inside the cells. The iTRAQ technique was used to analyze the characteristics of the changes of proteins during the action between Pb(II) and P. polonicum, which further revealed the mechanism of P. polonicum against Pb(II) and biomineralization. It was found that differential proteins in terms of redox, ion binding, metabolic process and ribosome synthesis were predominant in the GO analysis. Together with some of the characterization experiments above, the mechanisms mentioned above was well explained. The up-regulated expression of related proteins involved in respiratory metabolic pathways, antioxidant stress, and degradation of intracellular hazardous substances in the P. polonicum intracellularly such as succinate dehydrogenase, ATPase and cytochrome c oxidase, could explain the high tolerance of P. polonicum to Pb(II). The up regulation of OAH was responsible for extracellular PbC2O4 production. The up regulation of proteins such as TXN and GFA promoted Pb-glutathione (Pb-GSH) complex formation. This study explores the mechanism of Pb removal by fungi from the proteomic level, and provides new ideas and ways for Pb biogeochemical research.


Assuntos
Penicillium , Proteômica , Chumbo/metabolismo , Microscopia Eletrônica de Transmissão , Penicillium/metabolismo
4.
Biotechnol Lett ; 44(5-6): 741-753, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35538334

RESUMO

OBJECTIVES: To understand the mechanism of Pb(II) immobilized by Pb(II)-tolerant microbes. RESULTS: Aspergillus tubingensis isolated from the lead-zine mine was investigated through surface morphology observation and multiple experimental analysis in order to elucidate the Pb(II) biosorption and immobilization behavior. The maximum Pb(II) uptake capacity of A. tubingensis was about 828.8 mg L-1. Fourier transform-infrared spectra and environmental scanning electron microscope indicated that a large number of functional groups (carboxyl, phosphoryl and sulfydryl, etc.) participated in Pb(II) binding on the cell surface. Raman and X-ray diffraction, field emission high-resolution transmission electron microscopy and X-ray absorption fine structure investigation revealed that the Pb(II) loaded on the surface of the fungus could be transformed into PbCO3 and PbS nanocrystals. Meanwhile, Pb(II) transported into the cell would be oxidized to form lead oxide minerals (Pb2O3.333) over time. CONCLUSIONS: This study has important implications for an in-depth understanding of Pb(II) removal by A. tubingensis and provides guidance for remediating lead-polluted environment using microorganisms.


Assuntos
Aspergillus , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Environ Sci Pollut Res Int ; 28(24): 30486-30498, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33900555

RESUMO

Lead (Pb) is a toxic metal originating from natural processes and anthropogenic activities such as coal power plants, mining, waste gas fuel, leather whipping, paint, and battery factories, which has adverse effects on the ecosystem and the health of human beings. Hence, the studies about investigating the remediation of Pb pollution have aroused extensive attention. Microbial remediation has the advantages of lower cost, higher efficiency, and less impact on the environment. This paper represented a review on the mechanism of biomineralization using microbial-induced precipitation for immobilizing Pb(II), including microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and direct mineralization. The main mechanisms including biosorption, bioaccumulation, complexation, and biomineralization could decrease Pb(II) concentrations and convert exchangeable state into less toxic residual state. We also discuss the factors that govern methods for the bioremediation of Pb such as microbe characteristics, pH, temperature, and humic substances. Based on the above reviews, we provide a scientific basis for the remediation performance of microbial-induced precipitation technique and theoretical guidance for the application of Pb(II) remediation in soils and wastewater.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Biomineralização , Ecossistema , Humanos , Chumbo , Solo
6.
Water Environ Res ; 93(6): 844-853, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33131118

RESUMO

An indigenous lead-tolerant fungal strain was isolated from lead-contaminated soil and identified as Aspergillus niger, via 18S rRNA gene sequencing. We determined the adsorption and accumulation of Pb(II) by living A. niger and the adsorption of Pb(II) via modified A. niger. This strain resisted and removed 96.21%-100% Pb(II) ranging from 2 to 8 mmol/L Pb(II). Pb-containing particles were observed outside of the cell, and lead was detected inside the cell under scanning electron microscopy and transmission electron microscopy. The process of measuring the adsorption ability of modified fungal biomass, freeze-dried, high-temperature, and alkali-treated fungal samples was analyzed; they adsorbed 25.02%, 8.76%, and 15.05% Pb(II) under 8 mmol/L Pb(II) in 43, 10, and 10 hr, respectively. These three types of modified A. niger fit the pseudo-second-order model equation well. PRACTITIONER POINTS: Isolation and identification of effective Pb(II) removal strain from the soil around Dexing lead-zinc mine. The ability of living and modified Aspergillus niger to remove Pb(II) in an aqueous environment was evaluated. Lead distributions inside and outside the cell were analyzed by SEM and TEM. Kinetic models for modified biomass adsorbing Pb(II) were made for describing adsorption process.


Assuntos
Aspergillus niger , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo , Água
7.
Sci Rep ; 10(1): 9079, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493948

RESUMO

Currently, lead (Pb) has become a severe environmental pollutant and fungi hold a promising potential for the remediation of Pb-containing wastewater. The present study showed that Penicillium polonicum was able to tolerate 4 mmol/L Pb(II), and remove 90.3% of them in 12 days through three mechanisms: extracellular immobilization, cell wall adsorption, and intracellular bioaccumulation. In this paper. the three mechanisms were studied by Raman, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results indicated that Pb(II) was immobilized as lead oxalate outside the fungal cell, bound with phosphate, nitro, halide, hydroxyl, amino, and carboxyl groups on the cell wall, precipitated as pyromorphite [Pb5(PO4)3Cl] on the cell wall, and reduced to Pb(0) inside the cell. These combined results provide a basis for additionally understanding the mechanisms of Pb(II) removal by P. polonicum and developing remediation strategies using this fungus for lead-polluted water.


Assuntos
Adsorção/fisiologia , Bioacumulação/fisiologia , Chumbo/química , Chumbo/metabolismo , Penicillium/metabolismo , Parede Celular/metabolismo , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Minerais/química , Minerais/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Águas Residuárias/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA