RESUMO
Rehabilitation devices, such as traditional rigid exoskeletons or exosuits, have been widely used to rehabilitate upper limb function post-stroke. In this paper, we have developed an exosuit with four degrees of freedom to enable users to involve more joints in the rehabilitation process. Additionally, a hybrid electroencephalogram-based (EEG-based) control approach has been developed to promote active user engagement and provide more control commands.The hybrid EEG-based control approach includes steady-state visual evoked potential (SSVEP) paradigm and motor imagery (MI) paradigm. Firstly, the rehabilitation movement was selected by SSVEP paradigm, and the multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA) method was used for SSVEP EEG recognition; then, the motion intention was obtained by MI paradigm, and the convolutional neural network (CNN) and long short-term memory network (LSTM) were used to build a CNN-LSTM model for MI EEG recognition; finally, the recognition results were translated into control commands of Bowden cables to achieve multi-degree-of-freedom rehabilitation.Experimental results show that the average classification accuracy of the CNN-LSTM model reaches to 90.07% ± 2.23%, and the overall accuracy of the hybrid EEG-based control approach reaches to 85.26% ± 1.95%. The twelve subjects involved in the usability assessment demonstrated an average system usability scale (SUS) score of 81.25 ± 5.82. Additionally, four participants who underwent a 35-day rehabilitation training demonstrated an average 10.33% increase in range of motion (ROM) across 4 joints, along with a 11.35% increase in the average electromyography (EMG) amplitude of the primary muscle involved.The exosuit demonstrates good accuracy in control, exhibits favorable usability, and shows certain efficacy in multi-joint rehabilitation. Our study has taken into account the neuroplastic principles, aiming to achieve active user engagement while introducing additional degrees of freedom, offering novel ideas and methods for potential brain-computer interface (BCI)-based rehabilitation strategies and hardware development.Clinical impact: Our study presents an exosuit with four degrees of freedom for stroke rehabilitation, enabling multi-joint movement and improved motor recovery. The hybrid EEG-based control approach enhances active user engagement, offering a promising strategy for more effective and user-driven rehabilitation, potentially improving clinical outcomes.Clinical and Translational Impact Statement: By developing an exosuit and a hybrid EEG-based control approach, this study enhances stroke rehabilitation through better user engagement and multi-joint capabilities. These innovations consider neuroplasticity principles, integrating rehabilitation theory with rehabilitation device.
Assuntos
Eletroencefalografia , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior , Humanos , Eletroencefalografia/métodos , Extremidade Superior/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Masculino , Adulto , Exoesqueleto Energizado , Potenciais Evocados Visuais/fisiologia , Processamento de Sinais Assistido por Computador , Feminino , Redes Neurais de Computação , Adulto JovemRESUMO
BACKGROUND: Balance and mobility deficits are major concerns in stroke rehabilitation. Virtual reality (VR) training and Swiss-ball training are commonly used approaches to improve balance and mobility. However, no study has compared the efficacy of VR training, Swiss-ball training, and their combination in improving balance and mobility function or investigated cortical activation and connectivity in individuals with stroke. METHODS: A prospective, single-blinded, parallel-armed, multi-center randomized controlled trial with factorial design will be conducted. Seventy-six participants aged 30-80 years with stroke will be recruited. Participants will be allocated to one of the four groups: (A) the VR training + Swiss-ball training + conventional physical therapy group; (B) the Swiss-ball training + conventional physical therapy group; (C) the VR training + conventional physical therapy group; or (D) the conventional physical therapy group. All participants will receive 50 min of training per day, 5 times per week, for a total of 4 weeks. The primary outcomes will be balance and mobility measures. Secondary outcomes will include the 10-min walk test, dynamic gait index, and cortical activation. Outcomes will be measured on three occasions: at baseline, after the training, and at the 4-week follow-up. DISCUSSION: This trial will provide evidence to determine whether there are differences in clinical outcomes and cortical activation following two different types of exercise programs and their combination, and to elucidate the recovery mechanisms of balance and mobility function in individuals with stroke. TRIAL REGISTRATION: Chinese Clinical Trial Registry reference: www.chictr.org.cn (No. ChiCTR2400082135). Registered on May 24, 2024.
Assuntos
Estudos Multicêntricos como Assunto , Equilíbrio Postural , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Pessoa de Meia-Idade , Idoso , Método Simples-Cego , Estudos Prospectivos , Masculino , Adulto , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Feminino , Idoso de 80 Anos ou mais , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Terapia de Exposição à Realidade Virtual/métodos , Recuperação de Função Fisiológica , Realidade Virtual , Doença Crônica , Terapia por Exercício/métodos , Fatores de Tempo , Modalidades de FisioterapiaRESUMO
There is a significant interrelationship between cardiovascular disease and obstructive sleep apnea (OSA), as they share common risk factors and comorbidities. This study aimed to investigate the knowledge, attitude, and practice (KAP) of inpatients with cardiovascular disease towards OSA. This cross-sectional study was conducted between January, 2022 and January, 2023 at Zhongda Hospital Affiliated to Southeast University among inpatients with cardiovascular disease using a self-administered questionnaire. A self-designed questionnaire was used to assess KAP, and the STOP-Bang questionnaire was applied to evaluate participants' OSA risk. Spearman correlation and path analyses were conducted to explore relationships among KAP scores and high OSA risk. Subgroup analyses were conducted within the high-risk population identified by the STOP-Bang questionnaire. In a study analyzing 591 questionnaires, 66.33% were males. Mean scores were 6.81 ± 4.903 for knowledge, 26.84 ± 4.273 for attitude, and 14.46 ± 2.445 for practice. Path analysis revealed high risk of OSA positively impacting knowledge (ß = 2.351, P < 0.001) and practice (ß = 0.598, P < 0.001) towards OSA. Knowledge directly affected attitude (ß = 0.544) and practice (ß = 0.139), while attitude influenced practice (ß = 0.266). Among high OSA risk individuals, knowledge directly impacted attitude (ß = 0.645) and practice (ß = 0.133). Knowledge indirectly influenced practice via attitude (ß = 0.197). Additionally, attitude directly affected practice (ß = 0.305). These findings provide insights into the interplay between OSA risk, knowledge, attitude, and practice. Inpatients with cardiovascular disease demonstrated inadequate knowledge, moderate attitude, and practice towards OSA. The findings highlighting the need for targeted educational interventions to improve awareness and management of OSA.
Assuntos
Doenças Cardiovasculares , Conhecimentos, Atitudes e Prática em Saúde , Pacientes Internados , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Inquéritos e Questionários , Idoso , Fatores de Risco , AdultoRESUMO
In lithium-ion batteries, infusible metals with lithium, such as Mg, Fe, Co, Ni, and Cu are often utilized. However, current research predominantly focuses on the experimental aspects of the (de)lithiation process, with limited exploration from a theoretical calculation perspective. The extensive use of experimental methods to study the many electrochemically inert metals is time-consuming and costly. In this study, we successfully constructed and optimized SiOx/M@C (M = Fe, Co, Ni) heterostructures, integrating transition metal nanoparticles to address the electrochemical inertness and slow diffusion kinetics of pristine SiOx. A comprehensive density functional theory (DFT) study was conducted to examine the effects of different metal heterostructures on the structural, migration potential energy, and adsorption properties during lithium-ion intercalation. The results demonstrate that the SiOx/Fe@C heterostructure exhibits the lowest migration energy barrier, significantly enhancing lithium-ion transport compared to SiOx/Co@C and SiOx/Ni@C. Consequently, the SiOx/Fe@C electrode shows superior high-rate discharge capability and excellent cycling performance through electrochemical measurements. Additionally, the study delves into the intrinsic mechanisms through charge density differences and Fermi level calculations, providing valuable insights into the importance of hybrid strategies for incorporating inert metals into anode materials for lithium-ion batteries.
RESUMO
Intrauterine adhesion (IUA), a prevalent etiology of female infertility, is attributed to endometrial damage. However, conventional therapeutic interventions for IUA are plagued by high recurrence rates. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-EVs) demonstrate the promising therapeutic effects on IUA, but the current efficacy of extracellular vesicles (EVs) is hindered by lower retention and bioavailability. In this study, a thermosensitive hydrogel was utilized as a prolonged release carrier to improve the retention and bioavailability of hUCMSC-EVs in IUA treatment. The hydrogel-EVs complex effectively prolonged EVs retention in human endometrial stromal cells and an IUA mouse model. The complex exhibited superior protection against cellular injury, significantly alleviated endometrial damage, inhibited fibrosis, suppressed inflammation, and improved fertility compared to EVs alone. The results indicated that thermosensitive hydrogel enhanced the therapeutic capacity of EVs for IUA by prolonging their retention in the uterine environment. The hydrogel-EVs complex provides a novel strategy for the sustained release of hUCMSC-EVs in the treatment of IUA.
Assuntos
Vesículas Extracelulares , Hidrogéis , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Camundongos , Hidrogéis/química , Aderências Teciduais , Preparações de Ação Retardada/química , Cordão Umbilical/citologia , Endométrio/metabolismo , Útero/metabolismo , Modelos Animais de DoençasRESUMO
Effective, precise, and controllable oxygen delivery is crucial for regulating the oxygenation balance of brain tissue at the early stages of acute ischemic stroke (AIS) because the absence of oxygen may result in a series of highly interconnected vascular-neural pathological events, including oxidative stress, inflammation, and neuroapoptosis. In this study, platelet membrane-reassembled oxygen nanobubbles (PONBs) were constructed for oxygen delivery to protect AIS. Benefiting from the preserved natural targeting ability of platelet membranes, oxygen can be controlled release into the hypoxia lesion at the preperfusion stage due to vascular injury targeting and oxygen sustained diffusion capability after PONBs administration. Furthermore, synergizing with bioactive components carried by platelet membranes, PONBs can inhibit post-AIS vascular occlusion and maintain blood-brain barrier integrity, thereby facilitating enhanced oxygen delivery of PONBs, establishing a positive feedback loop between oxygen delivery and AIS protection. Additionally, the accumulation of PONBs enhances the ultrasound imaging contrast, enabling precise localization and dynamic monitoring of AIS lesions. Thus, PONBs represent a promising strategy for the diagnosis and treatment of AIS.
Assuntos
AVC Isquêmico , Oxigênio , Oxigênio/química , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Masculino , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Microbolhas , Plaquetas/metabolismo , Hipóxia/metabolismoRESUMO
The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 µM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 µM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.
Assuntos
Ácido Gálico , Rosa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ressonância de Plasmônio de Superfície , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Ressonância de Plasmônio de Superfície/métodos , Ácido Gálico/farmacologia , Ácido Gálico/química , Ácido Gálico/análogos & derivados , Humanos , Rosa/química , Antivirais/farmacologia , Antivirais/química , Antivirais/análise , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Espectrometria de Massas em Tandem/métodos , Técnicas Biossensoriais/métodos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Cromatografia Líquida de Alta Pressão/métodos , Ligação Proteica , Simulação de Dinâmica Molecular , COVID-19/virologiaRESUMO
For fractured gas reservoirs with strong water drive, gas phase trapping affects the gas recovery significantly. The recovery may be less than 50% for some reservoirs while it is only 12% for Beaver River gas field. The gas phase trapping mechanism has been revealed by the results of depletion experimental test. The residual pressure of the trapped gas is as high as 11.75 MPa with a 12.8 cm imbibition layer resulting in gas recovery deceased 49.5% compared with that without imbibition layer. A mathematical model is built to calculate the imbibition thickness based on capillary pressure and relative permeability of the matrix. The gas phase trapping are analyzed by two representative wells in Weiyuan gas field, the intermittent production reinforces the imbibition thickness and result in gas trapped in the matrix block with high residual pressure for the low performace gas wells, the extremely low gas recovery can be explained more rationally. That lays a foundation of improving the gas recovery for fractured reservoirs.
RESUMO
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. Patients with HSP experience spastic paralysis in both lower limbs, leading to progressive walking difficulties, increased reflexes, spasms, and extensor plantar responses. We successfully generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient diagnosed with HSP. The iPSCs exhibited a normal karyotype, expressed pluripotency markers, and differentiated into the three germ layers in vitro.
RESUMO
Fresh produce is traditionally labeled with plastic price lookup (PLU) stickers that are attached to the produce surface using edible glue. However, both the stickers and glue are environmental contaminants, and the stickers can still easily detach from the produce surface during handling and disrupt traceability. An alternative method of labeling, the CO2 laser-labeling technology (LLT), has been gaining attention in recent years. However, engraving Quick Response (QR) code using LLT is unique, and the performance of this technology varies from produce item to produce item, and information on its effects on postharvest quality, microbial safety, and economic feasibility has not been reported. The objectives of this study were to investigate the effect of laser-labeling technology on (1) postharvest quality, (2) microbial safety, and (3) economic analysis of this technology. Three horticultural crops, 'Red Delicious' apple (Malus pumila), green bell pepper (Capsicum annuum), and cucumber (Cucumis sativus) were procured from a local grocery store. Each produce was engraved with a Quick Response (QR) code or 6-digit alphanumerical (text) code using the commercially available Trotec Speedy 300 CO2 laser engraver, followed by the application of edible wax. Fresh weight loss for laser-printed produce was higher compared to controls, but no difference in visual quality ratings was observed. The laser-labeled produce was assessed for microbial contamination by artificially inoculating rifampicin-resistant Escherichia coli (E. coli) log10 6 CFU/mL to the labeled fruit. The results showed that the population of rifampicin-resistant E. coli was statistically higher in all three products labeled with text code compared to the nontreated controls. The QR-coded treatments were similar to the controls. The wax application did not affect the microbial attachment on the laser-labeled produce. The CO2 laser labeling technology has the potential for industrial application.
Assuntos
Microbiologia de Alimentos , Humanos , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Dióxido de Carbono , Contagem de Colônia Microbiana , Manipulação de Alimentos , Capsicum/microbiologiaRESUMO
This study developed a UPLC-PDA wavelength switching method to simultaneously determine the content of maltol and seventeen saponins in red and black ginseng and compared the quality differences of two different processed products of red and black ginseng. A Waters HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) at 30 â was adopted, with the mobile phase of acetonitrile(A) and water containing 0. 1% phosphoric acid(B) under gradient elution, the flow rate of 0. 3 m L·min~(-1), and the injection volume of 2 µL.The wavelength switching was set at 273 nm within 0-11 min and 203 nm within 11-60 min. The content results of multiple batches of red and black ginseng samples were analyzed by the hierarchical cluster analysis(HCA) and principal component analysis(PCA) to evaluate the quality difference. The results showed that the 18 constituents exhibited good linear relationships within certain concentration ranges, with the correlation coefficients(r) greater than 0. 999 1. The relative standard deviations(RSDs) of precision,repeatability, and stability were all less than 5. 0%. The average recoveries ranged from 95. 93% to 104. 2%, with an RSD of 1. 8%-4. 2%. The content determination results showed that the quality of red and black ginseng samples was different, and the two types of processed products were intuitively distinguished by HCA and PCA. The method is accurate, reliable, and reproducible. It can be used to determine the content of maltol and seventeen saponins in red and black ginseng and provide basic information for the quality evaluation and comprehensive utilization of red and black ginseng.
Assuntos
Panax , Pironas , Saponinas , Panax/química , Saponinas/análise , Saponinas/química , Cromatografia Líquida de Alta Pressão/métodos , Pironas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análiseRESUMO
DNA-based theragnostic platforms have attracted more and more attention, while their applications are still impeded by nonspecific interference and insufficient therapeutic efficacy. Herein, we fabricate an integrated "dual-key-and-lock" DNA nanodevice (DKL-DND) which is composed of the inner Dox/Hairpin/Aptazyme-Au@Ag@Au probes and the outer metal-organic frameworks loaded with Fuel strand. Once internalized into human breast cancer cells (MCF-7), the DKL-DND is activated by cascaded endogenous stimuli (acidic pH in the lysosome and high expression of ATP in the cytoplasm), leading to spatially controlled optical/magnetic resonance multimodal imaging and gene/chemo/small molecule combined cancer therapy. By engineering pH and ATP-responsive units as cascaded locks on the DKL-DND, the operating status of the nanodevice and accessibility of encapsulated anti-tumour drugs can be precisely regulated in the specified physiological states, avoiding the premature activation and release during assembly and delivery. Both in vitro and in vivo assessments demonstrate that the DKL-DND with excellent stimuli-responsive ability, biocompatibility, stability and accumulation behaviour was capable of simultaneously affording accurate tumour diagnosis and efficient tumour growth inhibition. This integrated DKL-DND exhibits great promise in constructing self-adaptive nanodevices for multimodal imaging-guided combination therapy.
RESUMO
Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.
Assuntos
Astrócitos , Encéfalo , Homeostase , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Receptor do Retrovírus Politrópico e Xenotrópico , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Calcinose/metabolismo , Calcinose/genética , Homeostase/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genéticaRESUMO
Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields.
RESUMO
Purpose: Capillary leak syndrome (CLS) is an intermediary phase between severe acute pancreatitis (SAP) and multiple organ failure. As a result, CLS is of clinical importance for enhancing the prognosis of SAP. Plakophilin2 (PKP2), an essential constituent of desmosomes, plays a critical role in promoting connections between epithelial cells. However, the function and mechanism of PKP2 in CLS in SAP are not clear at present. Methods: We detected the expression of PKP2 in mice pancreatic tissue by transcriptome sequencing and bioinformatics analysis. PKP2 was overexpressed and knocked down to assess its influence on cell permeability, the cytoskeleton, tight junction molecules, cell adhesion junction molecules, and associated pathways. Results: PKP2 expression was increased in the pancreatic tissues of SAP mice and human umbilical vein endothelial cells (HUVECs) after lipopolysaccharide (LPS) stimulation. PKP2 overexpression not only reduced endothelial cell permeability but also improved cytoskeleton relaxation in response to acute inflammatory stimulation. PKP2 overexpression increased levels of ZO-1, occludin, claudin1, ß-catenin, and connexin43. The overexpression of PKP2 in LPS-induced HUVECs counteracted the inhibitory effect of SB203580 (a p38/MAPK signaling pathway inhibitor) on the p38/MAPK signaling pathway, thereby restoring the levels of ZO-1, ß-catenin, and claudin1. Additionally, PKP2 suppression eliminated the enhanced levels of ZO-1, ß-catenin, occludin, and claudin1 induced by dehydrocorydaline. We predicted that the upstream transcription factor PPARγregulates PKP2 expression, and our findings demonstrate that the PPARγactivator rosiglitazone significantly upregulates PKP2, whereas its antagonist GW9662 down-regulates PKP2. Administration of rosiglitazone significantly reduced the increase in HUVECs permeability stimulated by LPS. Conversely, PKP2 overexpression counteracted the GW9662-induced reduction in ZO-1, phosphorylated p38/p38, and claudin1. Conclusion: The activation of the p38/MAPK signaling pathway by PKP2 mitigates CLS in SAP. PPARγactivator rosiglitazone can up-regulate PKP2. Overall, directing efforts toward PKP2 could prove to be a feasible treatment approach for effectively managing CLS in SAP.
RESUMO
In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.
Assuntos
Antibacterianos , Antioxidantes , Caseínas , Quitosana , Embalagem de Alimentos , Ceras , Embalagem de Alimentos/métodos , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Caseínas/química , Antioxidantes/química , Antioxidantes/farmacologia , Ceras/química , Resistência à Tração , Solubilidade , Permeabilidade , Vapor , Interações Hidrofóbicas e Hidrofílicas , Taninos/químicaRESUMO
Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.
Assuntos
Proteínas de Transporte , Ouro , Humanos , Imunoensaio/métodos , Proteínas de Transporte/sangue , Ouro/química , Limite de Detecção , Colorimetria/métodos , Nanopartículas Metálicas/química , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/sangue , Análise Espectral Raman/métodosRESUMO
Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties is desirable as these films are candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films, which are generated from the assembly process, would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrade their ionic kinetics and thus limit their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive, and capacitive graphene films. Typically, two-dimensional large graphene sheets (LGS) induce regular stacking of graphene oxide (GO) during the assembly process to reduce wrinkles, while one-dimensional single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically creates a fine microstructure by improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes compared to those of original rGO films. Moreover, owing to the comprehensive improved properties, a flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility, and excellent cycling stability (93.8% capacitance retention after 10 000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics.
RESUMO
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most dynamic component interacting with the organism, can affect the aging process through its own structure and metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future prospects of microbial intervention strategies in maintaining healthy aging.